Интервал.
Всякое событие происходит в пространстве и во времени и характеризуется тремя пространственными координатами x,y,z и одной временной координатой t. Поэтому для изучения динамики различных процессов часто пользуются воображаемым четырехмерным пространством, на осях которого откладывают координаты x,y,z и время t (четырехмерный мир Минковского).
Рассмотрим в четырехмерном пространстве два события: первое имеет координаты x1, y1, z1, t1, второе – x2, y2, z2, t2. Величину
(75)
называют интервалом между событиями.
Покажем, что интервал между двумя данными событиями одинаков во всех инерциальных системах отсчета. Для этого запишем (75) в двух инерциальных системах отсчета, движущихся относительно друг друга со скоростью , в следующем виде:
(76)
и
(77)
Из преобразований Лоренца следует, что:
; ; ; ; (78)
Подставим (78) а (77)
т.к. ; , рассмотрим разность :
умножим на с2:
откуда следует, что
или (79)
Понятие интервала устанавливает связь между пространственными и временными координатами событий. Как следует из (79), величина интервала не меняется при переходе от одной инерциальной системы отсчета к другой. Этот вывод вытекает из условия, что скорость света одинакова во всех инерциальных системах. Поэтому (79) представляет собой математическое выражение постулата о постоянстве скорости света.
Дата добавления: 2014-12-09; просмотров: 681;