Практическая работа №3. Восстановление изношенной поверхности детали вибродуговой наплавкой
Цель работы: используя данные и справочные материалы, рассчитать режимы технологического процесса восстановления детали вибродуговой наплавкой.
3.1. Теоретические сведения
Технология вибродуговой наплавки предусматривает восстановление деталей с цилиндрическими, коническими наружными и внутренними поверхностями, а также с плоскими поверхностями. Вибродуговой наплавкой с подачей жидкости можно восстанавливать детали небольших диаметров, имеющие термическую или химико-термическую обработку и работающие при статических нагрузках. Сюда можно отнести восстановление шеек под сальники различных фланцев, опорные шейки разжимных кулаков, шейки распределительных валов, цапфы крестовин дифференциала и др.
Этот метод основан на использовании тепла кратковременной дуги, которая возникает в момент разрыва цепи между вибрирующим электродом и наплавляемой поверхностью.
Особенность этого способа:
-получение малой толщины наплавляемого слоя,
-прерывистый характер процесса
-непрерывное охлаждение поверхности наплавки .
Вибродуговая наплавка обладает существенными преимуществами по сравнению с другими способами восстановления изношенных деталей. К числу таких преимуществ относятся: незначительные деформации наплавляемых деталей, малая глубина зоны термического влияния, получение наплавленных слоев повышенной твердости без дополнительной термической обработки, возможность наплавки тонких слоев (от 0,5—0,7 мм до 2—3 мм). Эти преимущества обусловили широкое применение описываемого способа для восстановления изношенных деталей, в частности для восстановления автомобильных и тракторных деталей, деталей сельхозмашин, электродвигателей, различного промышленного и горнорудного оборудования, деталей судовых механизмов и машин.
Вибродуговая наплавка применяется для восстановления цилиндрических деталей небольшого размера, особенно при ремонте деталей автомобилей и тракторов, станочного оборудования (оси, валы, шпиндели, шлицевые валики). За счет вибрации электродной проволоки (амплитуда - 0,5-3,0 мм) обеспечивается чередование кратковременной дуги, коротких замыканий и холостого хода Деталь, закрепленная в центрах или в патроне станка, равномерно вращается с необходимой скоростью. Для получения наплавленного слоя по ее длине сварочная ( вибродуговая ) головка перемещается вдоль наплавляемой детали. Электрод и деталь оплавляются за счет дугового разряда. Перенос металла, образующегося в виде капли на конце электрода в период горения дуги, происходит преимущественно во время короткого замыкания. Перенос металла небольшими каплями облегчает формирование ровных плотных слоев наплавленного металла.
На рисунке.3.1 дана принципиальная электро-кинематическая схема вибродуговой установки с электромеханическим вибратором.
Рисунок 3.1. Принципиальная схема вибродуговой установки:
1 – кассета с поволокой; 2 – ролики подающего механизма; 3 – якорь вибратора; 4 – насос для охлаждающей жидкости; 5 – вибрирующий мундштук 6 – ренодеталь ; 7 – катушка вибратора; 8 –генератора; 9 – электродвигатель; 10 – редуктор.
Токарный станок, на суппорте которого устанавливается наплавочная головка, может быть взят любой марки при условии, что его размеры удовлетворяют габаритам восстанавливаемых деталей. Для уменьшения скорости вращения детали при круговой наплавке применяется редуктор, обеспечивающий минимальную частоту вращения детали — до 8 об/мин.
На суппорте токарного станка закрепляют наплавочную головку (ОКС-6569 или ОКС-1252). Для питания дуги используют источники постоянного тока с жесткой внешней характеристикой (генераторы АНД-500/250, выпрямители ВС-300 и ВС-600, преобразователи ПД-305 и ПСГ-500).
К наплавляемой поверхности ренодетали, которая вращается в центрах токарного станка, роликами подающего механизма из кассеты через вибрирующий мундштук подается электродная проволока. Из-за колебаний мундштука, вызываемых электромеханическим вибратором, проволока периодически прикасается к поверхности восстанавливаемой детали и расплавляется под действием импульсных электрических разрядов, поступающих от генератора. Под действием вибратора мундштук вместе с проволокой вибрирует с частотой 110 Гц и амплитудой колебания до 4 мм (практически 1,8….2мм). Вибрация электрода во время наплавки обеспечивает стабильность процесса за счет частых возбуждений дуговых разрядов и способствует подаче электродной проволоки небольшими порциями, что обеспечивает лучшее формирование наплавленных валиков. Благодаря вибрациям процесс наплавки может быть осуществлен при низком напряжении (12…18 В).
Суть наплавки в том, что электрод вибрирует вдоль оси, вызывая короткие замыкания в сварочной цепи и короткие периоды действия дуги. Вследствие вибрации электродной проволоки происходит чередование: «дуговой разряд – короткое замыкание – холостой ход». Такой способ дает возможность получить слой толщиной от десятых долей миллиметра до 3 мм за один проход.
Охлаждающая жидкость (4…6 %-ный раствор кальцинированной соды в воде) защищает металл от окисления.
Вибродуговую наплавку можно вести не только в среде охлаждающей жидкости, но и в среде защитных газов, под флюсом и др. В последнем случае наплавленный металл получается более однородной структуры, с меньшими внутренними напряжениями, что дает основание к применению способа (особенно с последующим упрочнением) для восстановления деталей, работающих при знакопеременных нагрузках.
Детали, подлежащие наплавке, подвергаются очистке от грязи и коррозии наждачной шкуркой или металлическими щетками. Детали подвижных сопряжений с небольшим износом (0,1—0,20 мм) или погнутостью, а также с большой овальностью целесообразно предварительно прошлифовать, чтобы после механической обработки металл наплавки был наиболее качественным по химическому составу, структуре и механическим свойствам. Обработку следует вести до устранения указанных дефектов. Отверстия на поверхности детали, шпоночные канавки и т. п. заделываются графитовыми или медными пробками.
Электродная проволока выбирается применительно к материалу детали и ее поверхностной твердости, а ее диаметр — в соответствии с толщиной наплавки, которая устанавливается в зависимости от износа детали и припуска на механическую обработку. Для восстановления деталей с высокой поверхностной твердостью можно применять проволоку типа Нп-80, Нп-65Г, Нп-50Г; для деталей с твердостью НВ 300—450 — проволоку типа Нп-ЗОХГСА, Нп-ЗОХЗВА, Нп-40, Нп-40Г, Нп-50, для деталей с твердостью до НВ 300— проволоку Св-ЮГ, Св-Г2С и т. п. Обычно применяется проволока с диаметром 1,0—2,0 мм. К числу электрических параметров относятся род и полярность тока, напряжение и сила тока, индуктивность сварочной цели. Как уже отмечалось, наплавку ведут на постоянном токе при обратной полярности с включением в сварочную цепь индуктивности 6—8 витков дросселя РСТЭ-34. Напряжение тока при наплавке составляет 12—24 В. Сила тока зависит от скорости подачи электродной проволоки, с повышением которой увеличивается среднее значение силы тока и производительность процесса наплавки. Однако с увеличением силы тока длительность дуговых разрядов снижается, поэтому необходимо несколько повышать напряжение.
Дата добавления: 2014-12-09; просмотров: 3387;