Подведение функции под знак дифференциала
На уроке Неопределенный интеграл. Примеры решениймы научились раскрывать дифференциал, напоминаю пример, который я приводил:
То есть, раскрыть дифференциал – это почти то же самое, что найти производную.
Пример 1
Найти неопределенный интеграл. Выполнить проверку.
Смотрим на таблицу интегралов и находим похожую формулу: . Но проблема заключается в том, что у нас под синусом не просто буковка «икс», а сложное выражение. Что делать?
Подводим функцию под знак дифференциала:
Раскрывая дифференциал, легко проверить, что:
Фактически и – это запись одного и того же.
Но, тем не менее, остался вопрос, а как мы пришли к мысли, что на первом шаге нужно записать наш интеграл именно так: ? Почему так, а не иначе?
Формула (и все другие табличные формулы) справедливы и применимы НЕ ТОЛЬКО для переменной , но и для любого сложного выражения ЛИШЬ БЫ АРГУМЕНТ ФУНКЦИИ( – в нашем примере) И ВЫРАЖЕНИЕ ПОД ЗНАКОМ ДИФФЕРЕНЦИАЛА БЫЛИОДИНАКОВЫМИ.
Поэтому мысленное рассуждение при решении должно складываться примерно так: «Мне надо решить интеграл . Я посмотрел в таблицу и нашел похожую формулу . Но у меня сложный аргумент и формулой я сразу воспользоваться не могу. Однако если мне удастся получить и под знаком дифференциала, то всё будет нормально. Если я запишу , тогда . Но в исходном интеграле множителя-тройки нет, поэтому, чтобы подынтегральная функция не изменилась, мне надо ее домножить на ». В ходе примерно таких мысленных рассуждений и рождается запись:
Теперь можно пользоваться табличной формулой :
Готово
Единственное отличие, у нас не буква «икс», а сложное выражение .
Выполним проверку. Открываем таблицу производных и дифференцируем ответ:
Получена исходная подынтегральная функция, значит, интеграл найден правильно.
Обратите внимание, что в ходе проверки мы использовали правило дифференцирования сложной функции . По сути дела подведение функции под знак дифференциала и – это два взаимно обратных правила.
Пример 2
Найти неопределенный интеграл. Выполнить проверку.
Анализируем подынтегральную функцию. Здесь у нас дробь, причем в знаменателе линейная функция (с «иксом» в первой степени). Смотрим в таблицу интегралов и находим наиболее похожую вещь: .
Подводим функцию под знак дифференциала:
Те, кому трудно сразу сообразить, на какую дробь нужно домножать, могут быстренько на черновике раскрыть дифференциал: . Ага, получается , значит, чтобы ничего не изменилось, мне надо домножить интеграл на .
Далее используем табличную формулу :
Проверка:
Получена исходная подынтегральная функция, значит, интеграл найден правильно.
Пример 3
Найти неопределенный интеграл. Выполнить проверку.
Это пример для самостоятельного решения. Ответ в конце урока.
Пример 4
Найти неопределенный интеграл. Выполнить проверку.
Это пример для самостоятельного решения. Ответ в конце урока.
При определенном опыте решения интегралов, подобные примеры будут казаться лёгкими, и щелкаться как орехи:
И так далее.
В конце данного параграфа хотелось бы еще остановиться на «халявном» случае, когда в линейной функции переменная входит с единичным коэффициентом, например:
Строго говоря, решение должно выглядеть так:
Как видите, подведение функции под знак дифференциала прошло «безболезненно», без всяких домножений. Поэтому на практике таким длинным решением часто пренебрегают и сразу записывают, что . Но будьте готовы при необходимости объяснить преподавателю, как Вы решали! Поскольку интеграла в таблице вообще-то нет.
Дата добавления: 2014-11-29; просмотров: 2295;