Метод узловых потенциалов

 

Метод узловых потенциалов позволяет составить систему уравнений, по которой можно определить потенциалы всех узлов схемы. По известным разностям узловых потенциалов можно определить токи во всех ветвях. В схеме на рисунке 4.3 имеется четыре узла.

 

Рис. 4.3

 

 

Потенциал любой точки схемы можно принять равным нулю. Тогда у нас останутся неизвестными три потенциала. Узел, величину потенциала которого выбирают произвольно, называют базисным. Укажем в схеме произвольно направления токов.

Примем для схемы ᵠ4 = 0.

Запишем уравнение по первому закону Кирхгофа для узла 1.

(4.6)

В соответствии с законами Ома для активной и пассивной ветви

,

Где - проводимость первой ветви.

,

Где - проводимость второй ветви.

Подставим выражения токов в уравнение (4.6).

(4.7)

где g11 = g1 + g2 - собственная проводимость узла 1.

Собственной проводимостью узла называется сумма проводимостей ветвей, сходящихся в данном узле.
g12 = g2 - общая проводимость между узлами 1 и 2.
Общей проводимостью называют проводимость ветви, соединяющей узлы 1 и 2.

- сумма токов источников, находящихся в ветвях, сходящихся в узле 1.
Если ток источника направлен к узлу, величина его записывается в правую часть уравнения со знаком "плюс", если от узла - со знаком "минус".
По аналогии запишем для узла 2:

(4.8)

 

для узла 3:

(4.9)


Решив совместно уравнения (4.7), (4.8), (4.9), определим неизвестные потенциалы φ 1, φ2, φ3, а затем по закону Ома для активной или пассивной ветви найдем токи.
Если число узлов схемы - n, количество уравнений по методу узловых потенциалов - (n - 1).

 








Дата добавления: 2014-12-04; просмотров: 966;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.003 сек.