Методы интегрирования.
При интегрировании наиболее часто используются следующие методы.
1) Если то
(1)
где а и b–некоторые постоянные.
2) Подведение под знак дифференциала:
(2)
так как
3) Формула интегрирования по частям:
(3)
Обычно выражение выбирается так, чтобы его интегрирование не вызывало особых затруднений. За , как правило, принимается такая функция, дифференцирование которой приводит к ее упрощению. К классам функций, интегрируемых по частям, относятся, в частности, функции вида , где –многочлен от х.
4) Интегрирование рациональных дробей, т.е. отношений двух многочленов и (соответственно й и n й степени): сводится к разложению подынтегральной функции на элементарные, всегда интегрируемые дроби вида:
, (4)
где l и m –целые положительные числа, а трехчлен не имеет действительных корней. При этом в случае неправильной дроби ( ) должна быть предварительно выделена целая часть.
5) Интегрирование методом замены переменной (способом подстановки) является одним из эффективных приемов интегрирования. Его сущность состоит в переходе от переменной х к новой переменой t: . Наиболее целесообразная для данного интеграла замена переменной, т.е. выбор функции , не всегда очевидна. Однако для некоторых часто встречающихся классов функций можно указать такие стандартные подстановки:
где R– символ рациональной функции.
2. Формула Ньютона-Лейбница для вычисления определенного интеграла имеет вид:
(5)
если и первообразная непрерывна на отрезке .
Определенный интеграл численно равен площади криволинейной трапеции, ограниченной прямыми x=a, x=b, y=0 и частью графика функции взятой со знаком плюс, если , и со знаком минус, если .
Пример 1. Найти .
Решение. Так как то, используя формулы (1), получим
Проверка:
Пример 2. Найти .
Решение. Так как , то по формуле (2) находим
Пример 3. Найти .
Решение. Применим метод интегрирования по частям. Положим , тогда . Используя формулу (3), имеем
.
Пример 4. Найти .
Решение. Подынтегральная рациональная дробь является правильной и разлагается на элементарные дроби вида (4):
.
Освобождаясь от знаменателей в обеих частях этого равенства и приравнивая числители, получаем тождество для вычисления неопределенных коэффициентов :
.
Составим систему трех уравнений с тремя неизвестными. Одно уравнение получим, полагая х=2 (корень знаменателя подынтегральной функции). Два других получим, приравнивая коэффициенты при одинаковых степенях х в обеих частях тождества, например и при:
Решение этой системы дает: . Таким образом,
.
Пример 5. Вычислить определенный интеграл .
Решение. Применим метод замены переменной; положим , откуда . Найдем пределы интегрирования по переменой t: при имеем , а при имеем . Переходя в исходном интеграле к новой переменной и применяя формулу Ньютона-Лейбница (5), получаем:
.
Дата добавления: 2014-12-03; просмотров: 814;