Температурные интервалы начала и конца ковки для углеродистых сталей 5 страница
При напылении расплавленные по всему объему или по поверхности частицы материала будущего покрытия направляются на поверхность нагретой заготовки. При соударении с поверхностью частица деформируется, обеспечивая хороший физический контакт с деталью. Характер взаимодействия частицы с материалом подложки, последующая кристаллизация частиц определяет качество адгезии покрытия с подложкой. Последующие слои формируются уже за счет связей частиц друг с другом, имеют чешуйчатое строение и существенно неоднородны.
По мере повышения стоимости объемного легирования и стремления получить требуемые эксплуатационные свойства более экономичным способом (легированием поверхности) напыление становится все более предпочтительным.
Для напыления используют источники тепла: газовое пламя, плазму, ионный нагрев, нагрев в печах, лазер и др.
Наибольшее распространение получили процессы газопламенного и плазменного напыления. Материал для напыления подается в пламя горелки или плазменную дугу в виде проволоки или порошка, где происходит нагрев и распыление частиц, которые тепловым потоком источника нагрева разгоняются и попадают на поверхность напыляемой детали. Иной способ формирования покрытий при нагреве в печах. В этом случае нагретая деталь контактирует с материалом покрытия, находящимся в виде порошка или газовой фазы. Получаемое таким методом покрытие имеет высокую адгезию к поверхности детали за счет активных диффузионных процессов, происходящих в период длительной выдержки в печи при высокой температуре.
Все большее распространение получают ионно-плазменные методы напыления износостойких и декоративных покрытий.
Пайка
Пайка – процесс получения неразъемного соединения заготовок без их расплавления путем смачивания поверхностей жидким припоем с последующей его кристаллизацией. Расплавленный припой затекает в специально создаваемые зазоры между деталями и диффундирует в металл этих деталей. Протекает процесс взаимного растворения металла деталей и припоя, в результате чего образуется сплав, более прочный, чем припой.
Образование соединения без расплавления основного металла обеспечивает возможность распая соединения.
Качество паяных соединений (прочность, герметичность, надежность и др.) зависят от правильного выбора основного металла, припоя, флюса, способа нагрева, типа соединения.
Припой должен хорошо растворять основной металл, обладать смачивающей способностью, быть дешевым и недефицитным. Припои представляют собой сплавы цветных металлов сложного состава. По температуре плавления припои подразделяют на особо легкоплавкие (температура плавления ниже 145 0С), легкоплавкие (145…450 0С), среднеплавкие (450…1100 0С) и тугоплавкие (выше 1050 0С). К особо легкоплавким и легкоплавким припоям относятся оловянно-свинцовые, на основе висмута, индия, олова, цинка, свинца. К среднеплавким и тугоплавким относятся припои медные, медно-цинковые, медно-никелевые, с благородными металлами (серебром, золотом, платиной). Припои изготавливают в виде прутков, листов, проволок, полос, спиралей, дисков, колец, зерен, которые укладывают в место соединения.
При пайке применяются флюсы для защиты места спая от окисления при нагреве сборочной единицы, обеспечения лучшей смачиваемости места спая расплавленным металлом и растворения металлических окислов. Температура плавления флюса должна быть ниже температуры плавления припоя. Флюсы могут быть твердые, пастообразные и жидкие. Для пайки наиболее применимы флюсы: бура, плавиковый шпат, борная кислота, канифоль, хлористый цинк, фтористый калий.
Пайку точных соединений производят без флюсов в защитной атмосфере или в вакууме.
В зависимости от способа нагрева различают пайку газовую, погружением (в металлическую или соляную ванну), электрическую (дуговая, индукционная, контактная), ультразвуковую.
В единичном и мелкосерийном производстве применяют пайку с местным нагревом посредством паяльника или газовой горелки.
В крупносерийном и массовом производстве применяют нагрев в ваннах и газовых печах, электронагрев, импульсные паяльники, индукционный нагрев, нагрев токами высокой частоты.
Перспективным направлением развития технологии пайки металлических и неметаллических материалов является использование ультразвука. Генератор ультразвуковой частоты и паяльник с ультразвуковым магнитострикционным вибратором применяются для безфлюсовой пайки на воздухе и пайке алюминия. Оксидная пленка разрушается за счет колебаний ультразвуковой частоты.
Процесс пайки включает: подготовку сопрягаемых поверхностей деталей под пайку, сборку, нанесение флюса и припоя, нагрев места спая, промывку и зачистку шва.
Детали для пайки тщательно подготавливаются: их зачищают, промывают, обезжиривают.
Зазор между сопрягаемыми поверхностями обеспечивает диффузионный обмен припоя с металлом детали и прочность соединения. Зазор должен быть одинаков по всему сечению.
Припой должен быть зафиксирован относительно места спая. Припой закладывают в месте спая в виде фольговых прокладок, проволочных контуров, лент, дроби, паст вместе с флюсом или наносят в расплавленном виде. При автоматизированной пайке – в виде пасты с помощью шприц-установок.
При возможности предусматриваются средства механизации – полуавтоматы и автоматы для газовой, электрической пайки.
Паяные соединения контролируют по параметрам режимов пайки, внешним осмотром, проверкой на прочность или герметичность, методами дефекто- и рентгеноскопии.
ЛЕКЦИЯ 19
Механическая обработка. Технологические возможности способов резания
Механическая обработка
Общая характеристика размерной обработки
Механическая обработка поверхностей заготовок является одной из основных завершающих стадий изготовления деталей машин.
Одна из актуальных задач машиностроения – дальнейшее развитие, совершенствование и разработка новых технологических методов обработки заготовок деталей машин, применение новых конструкционных материалов и повышение качества обработки деталей машин.
Наряду с обработкой резанием применяют методы обработки пластическим деформированием, с использованием химической, электрической, световой, лучевой и других видов энергии.
Классификация движений в металлорежущих станках
Обработка металлов резанием – процесс срезания режущим инструментом с поверхности заготовки слоя металла в виде стружки для получения необходимой геометрической формы, точности размеров, взаимного расположения и шероховатости поверхностей детали.
Чтобы срезать с заготовки слой металла, необходимо режущему инструменту и заготовке сообщать относительные движения. Инструмент и заготовку устанавливают на рабочих органах станков, обеспечивающих движение.
Движения, которые обеспечивают срезание с заготовки слоя материала или вызывают изменение состояния обработанной поверхности заготовки, называют движениями резания:
· Главное движение – определяет скорость деформирования материала и отделения стружки (Дг);
· Движение подачи – обеспечивает врезание режущей кромки инструмента в материал заготовки (Дs);
Движения могут быть непрерывными или прерывистыми, а по характеру – вращательными, поступательными, возвратно-поступательными.
Движения подачи: продольное, поперечное, вертикальное, круговое, окружное, тангенциальное.
В процессе резания на заготовке различают поверхности (рис.19.1.а):
· обрабатываемую поверхность (1);
· обработанную поверхность (3);
· поверхность резания (2).
Установочные движения – движения, обеспечивающие взаимное положение инструмента и заготовки для срезания с нее определенного слоя металла.
Вспомогательные движения – транспортирование заготовки, закрепление заготовки и инструмента, быстрые перемещения рабочих органов.
Рис.19.1 Схемы обработки заготовок: а – точением; б – шлифованием на круглошлифовальном станке; в – сверлением
Режимы резания, шероховатость поверхности
При назначении режимов резания определяют скорости главного движения резания и подачи, и глубину резания.
Скоростью главного движения – называют расстояние, пройденное точкой режущей кромки инструмента в единицу времени (м/с).
Для вращательного движения:
,
где: – максимальный диаметр заготовки (мм); – частота вращения (мин-1).
Для возвратно-поступательного движения:
,
где: – расчетная длина хода инструмента; – число двойных ходов инструмента в минуту; – коэффициент, показывающий соотношение скоростей рабочего и вспомогательного хода.
Подача - путь точки режущей кромки инструмента относительно заготовки в направлении движения подачи за один ход заготовки или инструмента.
В зависимости от технологического метода обработки подачу измеряют:
мм/об – точение и сверление;
мм/дв. ход – строгание и шлифование.
Глубина резания( ) – расстояние между обрабатываемой и обработанной поверхностями заготовки, измеренное перпендикулярно к обработанной поверхности (мм).
Шероховатость поверхности – совокупность неровностей с относительно малыми шагами.
Шероховатость является характеристикой качества поверхностного слоя заготовки. Она оценивается несколькими параметрами, в частности критерием .
- среднее арифметическое отклонение профиля (среднее арифметическое абсолютных значений отклонений профиля) в пределах определенной базовой длины обработанной поверхности.
Допустимые значения шероховатости поверхностей деталей указываются на чертежах.
Значение параметра для разных технологических методов обработки лежат в пределах, мкм:
· для предварительной черновой обработки – 100…22,5 ;
· для чистовой обработки – 6,3…0,4 ;
· для отделочной и доводочной обработки – 0,2…0,012.
Станки для обработки резанием
Классификация металлорежущих станков
По общности технологического метода обработки различают станки: токарные, фрезерные, сверлильные и др.
По назначению различают станки: широкоуниверсальные, универсальные, широкого назначения, специализированные, специальные.
Универсальные станки обрабатывают разнотипным инструментом различающиеся по размерам, форме и расположению поверхностей заготовки.
Широкоуниверсальные – предназначены для выполнения особо широкого разнообразия работ.
Станки широкого назначения характеризуются однотипностью применяемого инструмента.
Специализированные станки предназначены для обработки однотипных заготовок различных размеров.
Специальные станки предназначены для выполнения определенных видов работ на заготовках одинаковых размеров и конфигурации.
· По массе: легкие (до 1т ), средние (до 10т ), тяжелые (свыше 10т ) и уникальные (свыше 100т ).
· По степени автоматизации: с ручным управлением, полуавтоматы и автоматы.
· По компоновке основных рабочих органов: горизонтальные и вертикальные.
В общегосударственной единой системе (ЭНИМС) станки разделяются на 10 групп и 10 типов. В группы объединены станки одинаковые или схожие по технологическому методу обработки. Типы характеризуют их назначение, степень автоматизации, компоновку.
Технологические возможности способов резания
Точение
Точение является основным способом обработки поверхностей тел вращения.
Процесс резания осуществляется на токарных станках при вращении обрабатываемой заготовки (главное движение) и перемещении резца (движение подачи).
Движение подачи осуществляется:
· параллельно оси вращения заготовки (продольная);
· перпендикулярно оси вращения заготовки (поперечная);
· под углом к оси вращения заготовки (наклонная).
Схемы обработки поверхностей заготовки точением представлены на рис. 19.2.
С помощью точения выполняют операции: обтачивание – обработку наружных поверхностей (рис19.2.а); растачивание – обработку внутренних поверхностей (рис.19.2.б); подрезание – обработку торцевых поверхностей (рис.19.2.в); резку – разрезание заготовки на части ( рис.19.2.г); резьбонарезание – нарезание резьбы (рис.19.2.д).
По технологическим возможностям точение условно подразделяют на: черновое, получистовое, чистовое, тонкое.
Рис. 19.2. Схемы обработки поверхностей заготовки точением
В качестве режущего инструмента при точении используют резцы.
Главным принципом классификации резцов является их технологическое назначение.
Различают резцы:
· проходные – для обтачивания наружных цилиндрических и конических поверхностей;
· расточные – проходные и упорные – для растачивания глухих и сквозных отверстий;
· отрезные – для отрезания заготовок;
· резьбовые – для нарезания наружных и внутренних резьб;
· фасонные – для обработки фасонных поверхностей;
· прорезные – для протачивания кольцевых канавок;
· галтельные – для обтачивания переходных поверхностей между ступенями валов по радиусу.
По характеру обработки – черновые, получистовые, чистовые.
По направлению движения подачи – правые и левые (справа на лево и слева на право).
По конструкции – целые, с приваренной или припаянной пластиной, со сменными пластинами.
Установка к закреплению заготовки зависит от типа станка, вида обрабатываемой поверхности, характеристики заготовки ( ), точности обработки и других факторов.
Сверление
Сверление является основным способом получения глухих и сквозных цилиндрических отверстий в сплошном материале заготовки.
В качестве инструмента при сверлении используется сверло, имеющее две главные режущие кромки.
Для сверления используются сверлильные и токарные станки.
На сверлильных станках сверло совершает вращательное (главное) движение и продольное ( движение подачи) вдоль оси отверстия, заготовка неподвижна (рис.19.3.а).
При работе на токарных станках вращательное (главное движение) совершает обрабатываемая деталь, а поступательное движение вдоль оси отверстия (движение подачи) совершает сверло (рис.19.3.б).
Диаметр просверленного отверстия можно увеличить сверлом большего диаметра. Такие операции называются рассверливанием (рис.19.3.в).
При сверлении обеспечиваются сравнительно невысокая точность и качество поверхности.
Для получения отверстий более высокой точности и чистоты поверхности после сверления на том же станке выполняются зенкерование и развертывание.
Зенкерование – обработка предварительно полученных отверстий для придания им более правильной геометрической формы, повышения точности и снижения шероховатости. Многолезвийный режущим инструментом – зенкером, который имеет более жесткую рабочую част, отсутствует ! число зубьев не менее трех (рис.19.3.г).
Развертывание – окончательная обработка цилиндрического или конического отверстия разверткой в целях получения высокой точности и низкой шероховатости. Развертки – многолезвийный инструмент, срезающий очень тонкие слои с обрабатываемой поверхности (рис.19.3.д).
Схемы сверления, зенкерования и развертывания представлены на рисунке 19.3.
Рис.19.3. Схемы сверления, зенкерования и развертывания
Протягивание
Протягивание является высокопроизводительным методом обработки деталей разнообразных форм, обеспечивающим высокую точность формы и размеров обрабатываемой поверхности. Применяется протягивание в крупносерийном производстве.
При протягивании используется сложный дорогостоящий инструмент – протяжка. За каждым формообразующим зубом вдоль протяжки изготавливается ряд зубьев постепенно увеличивающейся высоты.
Процесс резания при протягивании осуществляется на протяжных станках при поступательном главном движении инструмента относительно неподвижной заготовки за один проход.
Движение подачи отсутствует. За величину подачи принимают подъем на зуб, т.е. разность размеров по высоте двух соседних зубьев протяжки; является одновременно и глубиной резания.
Протяжные станки предназначены для обработки внутренних и наружных поверхностей. По направлению главного движения различают станки: вертикальные и горизонтальные.
Схемы обработки заготовок на протяжных станках представлены на рисунке 19.4.
Рис.19.4. Схемы обработки заготовок на протяжных станках
Отверстия различной геометрической формы протягивают на горизонтально-протяжных станках для внутреннего протягивания. Размеры протягиваемых отверстий составляют 5…250 мм.
Цилиндрические отверстия протягивают крупными протяжками после сверления, растачивания или зенкерования, а также литые или штампованные отверстия. Длина отверстий не превышает трех диаметров. Для установки заготовки с необработанным торцом применяют приспособление со сферической опорной поверхностью (может самоустанавливаться по оси инструмента), либо упор в жесткую поверхность (рис.19.4.а).
Шпоночные и другие пазы протягивают протяжками, форма зубьев которых в поперечном сечении соответствует профилю протягиваемого паза, с применением специального приспособления – направляющей втулки 3 (рис.19.4.б).
Наружные поверхности различной геометрической формы протягивают на вертикально-протяжных станках для наружного протягивания.
Схема протягивания вертикальной плоскости показана на рис.19.4.в.
Наружные поверхности заготовок типа тел вращения можно обрабатывать на специальных протяжных станках рис.19.4.г.
ЛЕКЦИЯ 20
Технологические возможности способов резания
Фрезерование
Фрезерование – высокопроизводительный и распространенный метод обработки поверхностей заготовок: многолезвийным режущим инструментом – фрезой.
Главным движением при фрезеровании является вращение фрезы, а вспомогательным поступательное перемещение заготовки. Движение подачи может быть и вращательное движение заготовки вокруг оси вращающегося стола или барабана (карусельно- фрезерные, и барабанно-фрезерные станки). Каждый режущий зуб при вращении фрезы врезается в заготовку и осуществляет резание только в пределах определенного угла поворота фрезы, а затем вращается в холостую до следующего врезания. Таким образом, особенностью процесса фрезерования является периодичность и прерывистость процесса резания каждым зубом фрезы, при чем процесс врезания зуба сопровождается ударами.
По исполнению фрезы делятся на цилиндрические, когда зубья располагаются только на цилиндрической поверхности фрезы и торцевые, у которых режущие зубья располагаются на торцевой и цилиндрической поверхности фрезы.
Схемы обработки заготовок на станках фрезерной группы представлены на рис. 20.1.
Рис. 20.1. Схемы обработки заготовок на станках фрезерной группы.
Горизонтальные плоскости фрезеруют на горизонтально-фрезерных станках цилиндрическими фрезами (рис. 20.1.а) и на вертикально- фрезерных станках торцовыми фрезами (рис. 20.1.б).
Вертикальные плоскости фрезеруют на горизонтально-фрезерных станках торцовыми фрезами (рис. 20.1.в) и торцовыми фрезерными головками, а на вертикально- фрезерных станках – концевыми фрезами (рис. 20.1.г).
Комбинированные поверхности фрезеруют набором фрез (рис. 20.1.д) на горизонтально- фрезерных станках.
Уступы и прямоугольные пазы фрезеруют концевыми (рис. 20.1.е) и дисковыми (рис. 20.1.ж) фрезами.
Шпоночные пазы фрезеруют концевыми или шпоночными фрезами на вертикально- фрезерных станках (рис. 20.1.з).
Фасонные поверхности незамкнутого контура с криволинейной образующей и прямолинейной направляющей фрезеруют фасонными фрезами соответствующего профиля (рис. 20.1.и).
Пространственно- сложные поверхности обрабатывают на копировально-фрезерных автоматах (рис. 20.1.к). Обработку производят специальной концевой фрезой. Фрезерование ведут по трем координатам: x, y, z (объемное фрезерование).
Шлифование
Шлифование – процесс обработки заготовок резанием с помощью инструментов (кругов), состоящих из абразивного материала.
Абразивные зерна расположены беспорядочно. При вращательном движении в зоне контакта с заготовкой часть зерен срезает материал в виде очень большого числа тонких стружек (до 100000000 в мин.).
Процесс резания каждым зерном осуществляется мгновенно. Обработанная поверхность представляет собой совокупность микро-следов абразивных зерен и имеет малую шероховатость.
Шлифование применяют для чистовой и отделочной обработки деталей с высокой точностью.
Главным движением при шлифовании является вращение шлифовального круга, а перемещение круга относительно детали является движением подачи.
Различают следующие основные схемы шлифования: плоское, круглое, внутреннее (рис. 20.2).
При плоском шлифовании (рис. 20.2.а) возвратно-поступательное движение заготовок необходимо для обеспечения продольной подачи . Для обработки поверхности на всю ширину заготовка или круг должны иметь поперечную подачу , которая осуществляется прерывисто при крайних положениях заготовки в конце продольного хода. Периодически осуществляется движение вертикальной подачи , в крайних положениях заготовки в конце поперечного хода.
Плоское шлифование может осуществляться периферией или торцом шлифовального круга.
При круглом шлифовании (рис. 20.2.б) движение продольной подачи осуществляется возвратно-поступательным перемещением заготовки. Подача соответствует осевому перемещению заготовки за один ее оборот. Вращение заготовки является движением круговой подачи. Подача на глубину резания происходит при крайних положениях заготовки.
Движения, осуществляемые при внутреннем шлифовании показаны на рис. 20.2.в.
Рис. 20.2. Основные схемы шлифования.
Для выполнения процесса шлифования наружных поверхностей деталей используются кругло-шлифовальные, плоско-шлифовальные и бесцентрово-шлифовальные станки. Для обработки сложных фасонных поверхностей используются специальные ленто- шлифовальные станки.
В ленто-шлифовальных станках применяется инструмент в виде бесконечной абразивной ленты. Лента в процессе шлифования поверхности сложной формы (например: лопатки турбин) огибает сложную поверхность и перемещается в осевом и продольном направлениях.
Абразивный слой наносят на бумажную или тканевую основу ленты.
Шлифованием обрабатываются только жесткие детали, не формирующиеся в процессе обработки. Данный способ не допускает обработки малых отверстий.
Технологические методы отделочной (финишной) обработки
поверхностей деталей машин
Дальнейшее развитие машиностроения связано с увеличением нагрузок на детали машин, увеличением скоростей движения, уменьшением массы конструкции.
Выполнить эти требования можно при достижении особых качеств поверхностных слоев деталей.
Влияние качества поверхностных слоев на эксплуатационные свойства огромно, изменяются:
· износостойкость;
· коррозионная стойкость;
· контактная жесткость;
· прочность соединений и другие свойства.
С этой целью широко применяются отделочные методы обработки, для которых характерны малые силы резания, незначительное тепловыделение, малая толщина срезаемого слоя.
Хонингование
Хонингование применяют для получения поверхностей высокой точности и малой шероховатости, а также для создания специфического микро-профиля обработанной поверхности в виде сетки (для удержания смазочного материала на поверхности деталей).
Поверхность неподвижной заготовки обрабатывается мелко-зернистыми абразивными брусками, закрепленными в хонинговальной головке (хоне). Бруски вращаются и одновременно перемещаются возвратно- поступательно вдоль оси обрабатываемого отверстия (рис. 20.3.а). Соотношение скоростей движений составляет 1,5…10, и определяет условия резания.
Рис. 20.3. Схема хонингования.
При сочетании движений на обрабатываемой поверхности появляется сетка микроскопических винтовых царапин – следов перемещения абразивных зерен. Угол пересечения этих следов зависит от соотношения скоростей (рис. 20.3.б).
Абразивные бруски всегда контактируют с обрабатываемой поверхностью, так как могут раздвигаться в радиальном направлении. Давление бруска контролируется.
Хонингованием исправляют погрешности формы от предыдущей обработки, а чистовое – для повышения качества поверхности.
Этот процесс осуществляется на специальных хонинговальных установках.
Суперфиниширование
Суперфиниширование уменьшает шероховатость поверхности, оставшуюся от предыдущей обработки. Получают очень гладкую поверхность, сетчатый рельеф, благоприятные условия для взаимодействия поверхностей.
Поверхности обрабатывают абразивными брусками, установленными в специальной головке. Для суперфиниширования характерно колебательное движение брусков наряду с движением заготовки (рис. 20.4).
Рис. 20.4. Схема суперфиниширования
Процесс резания происходит при давлении брусков (0,5…3)105 Па в присутствии смазочного материала малой вязкости.
Амплитуда колебаний 1,5…6 мм. Частота колебаний 400…1200 мин -1. Бруски подпружинены и самоустанавливаются по обрабатываемой поверхности. Соотношение скоростей DSкр к в начале обработки составляет 2…4, а в конце – 8…16.
Полирование
Полированием уменьшают шероховатость поверхности.
Этим способом получают зеркальный блеск на ответственных частях деталей (дорожки качения подшипников) либо на декоративных элементах (облицовочные части автомобилей). Используют полировальные пасты или абразивные зерна, смешанные со смазочным материалом. Эти материалы наносят на быстро- вращающиеся эластичные круги (фетровые)или на колеблющиеся щетки.
Хорошие результаты дает полирование быстродвижущимися абразивными лентами (шкурками).
При этом одновременно протекают следующие процессы:
Дата добавления: 2014-12-26; просмотров: 901;