Конверсия валюты и наращение процентов

Рассмотренные методы наращения процентов позволяют перейти к обсуждению более сложных и важных в практическом отношении задач. Рассмотрим задачу о совмещении операций конверсии (обмена) валюты и наращения процентов.

При возможности обмена рублевых средств на СКВ (Свободно-конвертируемая валюта) и обратной конверсии целесообразно сравнить доходы от непосредственного размещения имеющихся денежных средств в депозиты и опосредованно через другую валюту. Сказанное относится и к получению дохода от СКВ при ее обмене на рубли, депонировании и обратной конверсии.

Возможны четыре варианта для наращения процентов с конверсией денежных ресурсов и без нее:

без конверсии: СКВ → СКВ;

с конверсией: СКВ → Руб → Руб →СКВ;

без конверсии: Руб →Руб;

с конверсией: Руб →СКВ → СКВ →Руб.

В операции наращения с конверсией валют существует два источника дохода — изменение курса и наращение процентов, причем, если второй из них безусловный (так как ставка процента фиксирована), то этого нельзя сказать о первом источнике. Более того, двойное конвертирование валюты (в начале и конце операции) может быть при неблагоприятных условиях убыточным. Решим в связи с этим две задачи. Определим сумму в конце операции и ее доходность для двух вариантов операции с конверсией.

Вариант СКВ →Руб →Руб →СКВ. Примем следующие обозначения:

— сумма депозита в СКВ,

P — сумма депозита в рублях,

— наращенная сумма в СКВ,

S— наращенная сумма в рублях,

— курс обмена в начале операции (курс СКВ в рублях),

— курс обмена в конце операции,

n — срок депозита,

i — ставка наращения для рублевых сумм,

j — ставка наращения для конкретного вида СКВ.

Операция предполагает три шага: обмен валюты на рубли, наращение процентов на эту сумму и, наконец, конвертирование в исходную валюту. Конечная (наращенная) сумма в валютe определяется как

(1+ni)/ (1.19)

Три сомножителя этой формулы соответствуют трем перечисленным выше шагам. Множитель наращения m с учетом двойного конвертирования здесь имеет вид

m= (1+ n i)/ = (1+ n i)/( / ) (1.20)

Взаимодействие двух факторов роста исходной суммы в этой формуле представлено наиболее наглядно. С ростом ставки множитель наращения линейно увеличивается, в свою очередь, рост конечного курса обмена уменьшает его.

Пример 15. Предполагается поместить 1000 долл. на рублевом депозите. Курс продажи на начало срока депозита 26,08 руб. за $1, курс покупки доллара в конце операции 26,45 руб. Процентные ставки: i= 22%; j = 15% (360/360). Срок депозита — 3 месяца.

=1000(26,08/26,45)(1+(3/12)(22/100))=1040,2 долл.

В свою очередь прямое наращение исходной долларовой суммы по долларовой ставке процента дает

= 1000(1 + 0,25×0,15) = 1037,5 долл.

Тестовые задания

1011234. Процентные деньги (проценты) это:

1. Деньги представляемые в долг;

2. Доход от инвестированного капитала;

3. Капитал к его будущей стоимости;

4. Относительная величина дохода.

1022431. Основной капитал это:

1. Сумма долга;

2. Проценты, начисляемые по принципу скидки;

3. Сумма денег дающихся в займы;

4. Вексель, подлежащий оплате.

1033124. Норма процента это:

1. Способ наращения, при котором проценты начисляются на первоначальную сумму;

2. Проценты, начисляемые по принципу наращения на сумму долга;

3. Процесс увеличения денег, предоставляемых в долг;

4. Отношение процента к основной сумме (капиталу).

1042312. Под наращенной суммой ссуды (долга, депозита и др.) понимается:

1. Первоначальная ее сумма с начисленными процентами к концу срока начисления;

2. Увеличение денег, предоставляемых в долг;

3. Всякое уменьшение денег – суммы счета, долга и др.;

4. Сумма денег, инвестированная под проценты.

1053132. Обыкновенный процент, это когда при расчетах процентов используются:

1. Временная база 365/365 дней;

2. Временная база 360 дней;

3. Временная база 360/365 дней;

4. Временная база 365/366 дней.

1063134. Точный процент, это когда при расчетах процентов используются:

1. Временная база 365/365 дней;

2. Временная база 360/365 дней;

3. Временная база 360/360 дней;

4. Временная база 365/366 дней.

1072314. Точный процент с точным числом дней ссуды обозначается как:

1. Временная база 365/365;

2. Временная база 360/365;

3. Временная база 365/360;

4. Временная база 360/360.

1082134. Обыкновенный процент с точным числом дней (банковский) обозначается как:

1. Временная база 365/365;

2. Временная база 360/365;

3. Временная база 365/360;

4. Временная база 360/360.

1093241. Актуарный метод это метод погашения краткосрочных обязательств и предполагает:

1. Последовательное погашение процентов на фактические суммы долга;

2. Если срок ссуды не превышает года, то сумма долга с процентным остатком неизменная до полного погашения;

3. Если срок ссуды не превышает года, то сумма долга с процентным переносится на следующий год;

4. Если срок ссуды превышает год, расчеты делаются для годового периода задолженности.

 

1101432. В потребительском кредите проценты начисляются:

1. На первоначальную сумму;

2. На основную сумму долга;

3. По договоренности с кредитором, при условии, что кредитор рассчитается по обязательству в полном объеме;

4. На всю сумму кредита, присоединяемую к основному долгу уже в момент открытия кредита.

1112431. Необходимость дисконтирования возникает:

1. При покупке краткосрочных обязательств, без оплаты должником обязательств;

2. При покупке долгосрочных обязательств независимо от срока оплаты;

3. При покупке краткосрочных обязательств, оплата которых должником произойдет в будущем;

4. При продаже долгосрочных обязательств, если обязательства предлагаются под простые проценты.

1121234. Дисконтирование по простым процентным ставкам это когда:

1. По заданной сумме P определяется итоговая сумма S, которая будет накоплена;

2. По заданной сумме S, которую следует уплатить через некоторое время n, необходимо определить сумму ссуды P;

3. Когда прибыль вычисляется по формуле D = Std;

4. Когда инвестор покупает вексель до даты его погашения.

1133312. Математическое дисконтирование это задача, которая формируются так:

1. Какую вторичную сумму ссуды надо выдать в долг, чтобы получить в конце срока проценты в два раза большие, чем первоначально;

2. Какую первоначальную сумму ссуды надо выдать в долг, чтобы получить в конце срока сумму S, при условии, что на долг начисляются проценты по ставке i;

3. Какую первоначальную сумму ссуды надо выдать в долг, чтобы получить в конце срока сумму S, при условии, чтобы на долг проценты не начислялись.

4. Какую первоначальную сумму ссуды надо выдать в долг, чтобы получить в конце срока сумму S, при условии, что на долг начисляются проценты по ставке простого дисконта.

1141432. Выручкой при дисконтировании называется:

1. Первоначальная сумма вместе с процентными деньгами;

2. Всякое уменьшение денег – суммы счета, расчета, долга и так далее;

3. Сумма, остающиеся после вычитания дисконта из первоначальной суммы взятой в долг;

4. Сумма, остающиеся после вычитания дисконта из суммы погашения.

1153312. Банковский или коммерческий учет векселей это метод, по которому:

1. Проценты за пользование ссудой в виде дисконта, когда проценты не начисляются;

2. Проценты за пользование ссудой в виде дисконта начисляются на сумму подлежащею уплате в конце срока по годовой учетной ставке дисконта d;

3. Проценты за пользование ссудой в виде дисконта начисляются на сумму подлежащею уплате в начале срока годовой учетной ставки дисконта d;

4. Проценты за пользование ссудой в виде дисконта, когда проценты начисляются не на всю сумму.

1163321. Процент авансом это:

1. Банковский дисконт

2. Сумма наращения

3. Простой процент

4.Простой процент, который рассчитывается на Р и выплачивается в конце сделки

 

1171322. Необходимость в расчетах процентной ставки возникает при определении:

1. Финансовой эффективности операции и при сравнении контрактов по их доходности в случаях, когда ставки указаны в явном виде;

2. При покупке краткосрочных обязательств, оплата которых должником произойдет в будущем;

3. Финансовой эффективности операции и при сравнении контрактов по их доходности в случаях, когда процентные ставки в явном виде не указаны;

4. При покупке долгосрочных обязательств, оплата которых должником произойдет в будущем.

1182213. В операции приращения с конверсией валют существуют следующие источники дохода:

1. Изменение курса, наращение процента;

2. Наращение процента, дисконт;

3. Дисконт, наращение курса;

4. Двойная конверсия, дисконт.

1193124. Если ставку налога увеличить в два раза, то сумма процента:

1. Уменьшится в два раза;

2. Уменьшится в 1,444раза;

3. Увеличится в 1,444раза;

4. Увеличится в два раза.

1202134. Если ставку налога увеличить в два раза, то наращенная сумма:

1. Уменьшится в два раза;

2. Уменьшится в 1,444раза;

3. Увеличится в 1,444раза;

4. Увеличится в два раза.

 


<== предыдущая лекция | следующая лекция ==>
Математическое дисконтирование. | Формула сложных процентов




Дата добавления: 2019-10-16; просмотров: 77; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию, введите в поисковое поле ключевые слова и изучайте нужную вам информацию.

Поделитесь с друзьями:

Если вам понравился данный ресурс вы можете рассказать о нем друзьям. Сделать это можно через соц. кнопки выше.
helpiks.org - Хелпикс.Орг - 2014-2020 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.011 сек.