Эффективная ставка процентов

Период начисления по сложным процентам не всегда равен году, однако в условиях финансовой операции указывается не ставка за период, а годовая ставка с указанием периода начисления – номинальная ставка ( j ).

Номинальная ставка -годовая ставка процентов, исходя из которой определяется величина ставки процентов в каждом периоде начисления, при начислении сложных процентов несколько раз в год.

Эта ставка, во-первых, не отражает реальной эффективности сделки;

во-вторых, не может быть использована для сопоставлений.

Если начисление процентов будет производиться m раз в год, а срок долга – n лет, то общее количество периодов начисления за весь срок финансовой операции составит N = n • m.

Отсюда формулу сложных процентов можно записать в следующем виде:

S=P • (1 + j / m)N = P • (1 + j /m)mn,

где j– номинальная годовая ставка процентов.

Пример 3. Изменим условие примера 1, введя ежеквартальное начисление процентов.

Решение:

Количество периодов начисления:

N = m • n = 4 • 2 = 8

Наращенная сумма составит:

S=P • (1 + j / m)mn= 2'000 • (1 + 0,1 / 4 )8 = 2'436,81 руб.

Сумма начисленных процентов:

I = S- P = 2'436,81 - 2'000 = 436,81 руб.

Таким образом, через два года на счете будет находиться сумма в размере 2'436,81 руб., из которой 2'000 руб. является первоначальной суммой, размещенной на счете, а 436,81 руб. – сумма начисленных процентов.

Наряду с номинальной ставкой существует эффективная ставка, измеряющая тот реальный относительный доход, который получен в целом за год, с учетом внутригодовой капитализации. Эффективная ставка показывает, какая годовая ставка сложных процентов дает тот же финансовый результат, что и m-разовое наращение в год по ставкеj / m:

(1 + i)n = (1 + j / m)m • n,

следовательно, i = (1 + j / m)m- 1.

Из формулы следует, что эффективная ставка зависит от количества внутригодовых начислений.

Расчет эффективной ставки является мощным инструментом финансового анализа, поскольку ее значение позволяет сравнивать между собой финансовые операции, имеющие различные условия: чем выше эффективная ставка финансовой операции, тем (при прочих равных условиях) она выгоднее для кредитора.

Пример 4. Рассчитаем эффективную ставку для финансовой операции, рассмотренной в предыдущем примере, а также для вклада при ежемесячном начислении процентов по годовой ставке 10%.

Решение:

Эффективная ставка ежеквартального начисления процентов, исходя из 10% годовых, составит:

i = (1 + j / m)m - 1 = (1 + 0,1 / 4)4 - 1 = 0,1038.

Эффективная ставка ежемесячного начисления процентов будет равна:

i = (1 + j / m)m - 1 = (1 + 0,1 / 12)12 - 1 = 0,1047.

Таким образом, годовая ставка, эквивалентная номинальной ставке процентов в размере 10% годовых при ежемесячном начислении процентов, составит 10,47% против 10,38% с ежеквартальным начислением процентов. Чем больше периодов начисления, тем быстрее идет процесс наращения.

Для облегчения расчетов можно пользоваться таблицами коэффициентов наращения сложных процентов, но внимательно следить за соответствием длины периода начисления и процентной ставки за этот же период. Например, если периодом начисления является квартал, то в расчетах должна использоваться квартальная ставка.


<== предыдущая лекция | следующая лекция ==>
Формула сложных процентов | Непрерывное начисление процентов




Дата добавления: 2019-10-16; просмотров: 71; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию, введите в поисковое поле ключевые слова и изучайте нужную вам информацию.

Поделитесь с друзьями:

Если вам понравился данный ресурс вы можете рассказать о нем друзьям. Сделать это можно через соц. кнопки выше.
helpiks.org - Хелпикс.Орг - 2014-2020 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.