Измеренных величин.

В практике геодезических измерений определяемые величины обычно являются функциями других, непосредственно измеряемых величин. Рассмотрим функцию u независимых переменных x, y, z,

u = f (x,y,z…). (5.5)

Продифференцируем функцию (5.5) по всем переменным и заменим дифференциалы du, dx, dy, dz, …. погрешностями Du, Dx,Dy,Dz, ….

Получили выражение случайной погрешности Du в зависимости от случайной комбинации погрешностей Dx,Dy,Dz, …. Положим, что имеем n таких комбинаций, которым соответствует n выражений:

(i = 1, 2, …, n)

Возведем полученные выражения в квадрат, сложим и разделим на n:

,

где квадратными скобками обозначены суммы.

Устремим число комбинаций в бесконечность (n ® ¥) и, воспользовавшись выражениями (5.4) и (5.3), получим: , , , , . И окончательно

(5.6)

Итак, квадрат средней квадратической погрешности функции общего вида равен сумме квадратов произведений частных производных по каждой переменной, умноженных на их средние квадратические погрешности.

Частные случаи.

1. Функция u является суммой переменных x , y, z:

u = x + y + z.

В этом случае =1, =1, =1. Следовательно

= + + .

2. Функция u является разностью переменных x и y:

u = x - y.

В этом случае =1, =-1. Следовательно

= + .

3. Функция u имеет вид:

u = k× x,

где k – постоянный множитель. Теперь = k, поэтому = k2× и

mu = k× mx.

4. Функция u является линейной функцией от x, y, z, …:

u = k1 x + k2 y + k3 z …,

где ki ­постоянные множители. Теперь частные производные равны =k1, = k2, = k3. Поэтому

.

Рассмотрим примеры.

Пример 1. Определить среднюю квадратическую погрешность превышения, вычисленного по горизонтальному расстоянию d=124,16 м и углу наклона n=2°16´, если md = 0,06 м, а mn = 1´.

Превышение вычисляют по формуле

h = d tgν.

Продифференцируем формулу по переменным d и n:

, .

Используя формулу общего вида (5.6) получим

Подставляя исходные данные, найдем

где 3438¢ -­ число минут в радиане. И окончательно mh=0,036 .м.

Пример 2. При геометрическом нивелировании (см. раздел 9.2) превышение вычисляют как разность отчетов по рейкам

h = a - b.

Отчеты берут с точностью ma = mb = 2 мм. Находим среднюю квадратическую погрешность превышения

= 2,8 мм

Пример 3. Выведем формулу допустимой угловой невязки замкнутого теодолитного хода (см. раздел 9.4). Невязку вычисляют по формуле

fb= b1+ b2+ ¼+ bn-180°(n-2),

где bi – измеренные углы (i = 1, 2, ¼, n) и n – их число.

Невязка - результат погрешностей в углах bi. Поэтому средняя квадратическая погрешность невязки равна

mf = = ,

где m1 = m2 =¼ = mn = m – средняя квадратическая погрешность измерения угла. Примем ее равной m = 0,5¢.

Допуском угловой невязки (fb)доп служит предельная погрешность (fb)пред=2mf. Получаем формулу

(fb)доп = 1¢ .








Дата добавления: 2019-04-03; просмотров: 213;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.01 сек.