Характеристики точности измерений

Каждая погрешность в отдельности не может характеризовать точность измерений, поскольку она случайна. Нужна такая оценка, которая характеризует точность в среднем.

Общепринятой характеристикой точности является предложенная К.Ф. Гауссом средняя квадратическая погрешность

, (5.4)

где Δ1, Δ2, …, Δn – случайные погрешности измерений. Достоинством этой характеристики является ее устойчивость, независимость от знаков отдельных погрешностей и усиленное влияние больших погрешностей.

Теоретически строгим значением средней квадратической погрешности считают оценку, получаемую по формуле (5.4) при бесконечно большом числе измерений, то есть при n®¥. Такую строгое значение средней квадратической погрешности часто именуют термином стандарт.

На практике приходится пользоваться ограниченным числом измерений, отчего оценки, вычисленные по формуле (5.4) вследствие случайного характера погрешностей Δi отличаются от строгой оценки – стандарта. Средняя квадратическая погрешность определения m по формуле (5.4) приближенно равна .

Формула (5.4) находит применение при исследовании точности геодезических приборов и методов измерений, когда известно достаточно точное, близкое к истинному, значение X измеряемой величины. Но обычно значение измеряемой величины заранее неизвестно. Тогда вместо формулы Гаусса пользуются формулой Бесселя (см. раздел 5.5), определяющей среднюю квадратическую погрешность по отклонениям результатов измерений от среднего.

В большинстве случаев погрешности измерений распределены по нормальному закону, установленному Гауссом. Это означает, что в интервал от –m до + m попадает 68,27% результатов повторных измерений одной и той же величины. В интервал от –2 m до +2 m попадает 95,45%, а в интервал от –3 m до +3 m попадает 99,73%.

Таким образом, вероятность того, что случайная погрешность превышает 2 m, равна 4,5%, а что она превышает 3 m - лишь 0,27%. Поэтому погрешности, большие 2 m, считают практически невероятными и относят к числу грубых погрешностей, промахов.

Величину 2 m называют предельной погрешностью и используют как допуск при отбраковке некачественных результатов измерений.

Dпред = 2 m.

В ряде случаев за предельно допустимую погрешность принимают величину 3 m.

Величины D, m, Dпред, выражаемые в единицах измеряемой величины, называются абсолютными погрешностями.

Наряду с абсолютными применяются также и относительные погрешности, представляющие собой отношение абсолютной погрешности к измеряемой величине. Относительную погрешность принято выражать в виде простой дроби с единицей в числителе, например

,

где l -­ значение измеряемой величины, а N – знаменатель дроби.

Относительные погрешности используют, например, когда точность результата измерения зависит от измеряемой величины. Так при одинаковой абсолютной погрешности двух измеренных линий точнее измерена та, длина которой больше.








Дата добавления: 2019-04-03; просмотров: 368;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.