ОСНОВНЫЕ СВОЙСТВА ЭКОСИСТЕМЫ

Согласно общей теории систем экосистема обладает общими свойствами, характерными для сложных систем. К таким свойствам относятся: эмерджентность, принцип необходимого разнообразия элементов, устойчивость, принцип неравновесности, вид обмена ве­ществ или энергии, эволюция.

Эмерджентность (от англ, emergence — неожиданно возникаю­щий) системы — степень несводимости свойств системы к свойствам составляющих ее элементов. Свойства системы зависят не только от составляющих ее элементов, но и от особенностей взаимодействия между ними (например, явление синергизма, когда при взаимодей­ствии некоторых токсичных соединений получаются еще более ядови­тые вещества).

Принцип необходимого разнообразия элементов сводится к то­му, что любая система не может состоять из абсолютно одинаковых элементов, более того, разнообразие элементов, ее составляющих, является необходимым условием функционирования. Нижний предел разнообразия равен двум, верхний — стремится к бесконечности. Разнообразие и наличие разных фазовых состояний веществ, состав­ляющих экосистему, определяют ее гетерогенность.

Устойчивость динамической системы и ее способность к са­мосохранению зависит от преобладания внутренних взаимодействий над внешними. Если внешнее воздействие на биологическую систему превосходит энергетику ее внутренних взаимодействий, то это может вызвать необратимые изменения или гибель системы. Устойчивое или стационарное состояние динамической системы поддерживается непрерывно выполняемой внешней работой, для чего необходимы приток энергии, ее преобразование в системе и отток за пределы системы.

Принцип неравновесности сводится к тому, что системы, функ­ционирующие с участием живых организмов, являются открытыми, поэтому для них характерно поступление и отток энергии и вещес­тва, что невозможно осуществить в условиях равновесного состоя­ния. Следовательно, любая экосистема представляет собой открытую, динамическую, неравновесную систему.

Понятие равновесия является одним из основных положений в науке. С точки зрения такой науки, как синергетика (от греч. synergos — вместе действующий; междисциплинарная область иссле­дований процессов самоорганизации и самодезорганизации в различ­ных системах, в том числе в живых, например, в популяциях), имеются следующие различия между равновесной и неравновесной системами:

– Система реагирует на внешние условия.

– Поведение системы случайно и не зависит от начальных усло­вий, но зависит от предыстории.

– Приток энергии создает в системе порядок, следовательно, эн­тропия ее уменьшается.

– Система ведет себя как единое целое.

Система может находиться в состоянии равновесности и неравновёсности; при этом ее поведение существенно различается.

В соответствии со вторым законом термодинамики к равновесно­му состоянию приходят все закрытые системы, то есть системы, не получающие энергии извне. При отсутствии доступа энергии извне система стремится к состоянию равновесия, при котором энтропия равна нулю. В случае когда система находится в неравновесном сос­тоянии, создаются условия формирования новых структур, для кото­рых необходимо следующее:

1) открытость системы;

2) неравновес­ное ее состояние;

3) наличие флуктуации.

Чем сложнее система, тем более многочисленны типы флуктуации, которые могут привести ее в неустойчивое состояние. Однако в сложных системах существуют связи между частями, которые позволяют системе сохранять устой­чивое состояние. Соотношением между устойчивостью, обеспечиваю­щейся взаимосвязью между частями, и неустойчивостью из-за нали­чия флуктуации определяется порог устойчивости системы. Если этот порог превышается, система попадает в критическое состояние, кото­рое называется точкой бифуркации. В данной точке система стано­вится неустойчивой относительно флуктуации и может перейти в но­вое состояние устойчивости. Это положение имеет огромное значе­ние в эволюции экосистем. В точке бифуркации система как бы колеблется между выбором одного из нескольких путей эволюции.

Подавляющее большинство систем в природе относится к откры­тым, обменивающимся с окружающей средой энергией, веществом и информацией. Главенствующая роль в природных процессах принад­лежит не порядку, стабильности и равновесию, а неустойчивости и неравновесности, то есть все системы флуктуируют. В точке бифурка­ции система не выдерживает и разрушается, и в этот момент времени невозможно предсказать, в каком состоянии она будет находиться:

станет ли состояние системы хаотическим или она перейдет на но­вый, более высокий уровень неупорядоченности.

Принцип равновесия в живой природе играет огромную роль. Смещение равновесия между видами в одну сторону может привести к исчезновению обеих видов. Например, уничтожение хищников мо­жет привести к уничтожению жертв, давление которых на окружаю­щую среду может возрасти до такой степени, что им не хватит пищи. В природе наблюдается огромное количество равновесий, которые поддерживают общее равновесие в природе.

Равновесие в живой природе не статично, а динамично и пред­ставляет собой движение вокруг точки устойчивости. Если данная точка устойчивости не меняется, то такое состояние называется гомеостазом (от греч. homoios — тот же самый, погожий и stasis — не­подвижность, стояние). Гомеостаз — способность организма или системы поддерживать устойчивое (динамическое) равновесие в из­меняющихся условиях среды.

Согласно принципу равновесия любая естественная система с проходящим через нее потоком энергии склонна развиваться в сто­рону устойчивого состояния. Гомеостаз, существующий в природе, осуществляется автоматически за счет механизмов обратной связи. Молодые системы с неустоявшимися связями, как правило, подвер­жены резким колебаниям и менее способны противостоять внешним возмущениям по сравнению со зрелыми системами, компоненты ко­торых успели приспособиться друг к другу, то есть прошли эволюци­онные приспособления.

Естественное равновесие означает, что экосистема сохраняет свое стабильное состояние и некоторые параметры неизменными, несмотря на воздействие факторов внешней среды. Так как экосисте­ма представляет собой открытую систему, то ее устойчивое состоя­ние означает, что поступление вещества и поток энергии на входе и выходе сбалансированы.

Под воздействием на экосистему внешних факторов она переходит от одного состояния равновесия к другому. Такое состояние называет­ся устойчивым равновесием. По многочисленным данным, экологичес­кая обстановка на нашей планете не всегда была одной и той же. Бо­лее того, она испытывала резкие перемены всех ее компонентов. Это можно продемонстрировать на примере появления кислорода в атмо­сфере. Известно, что ультрафиолетовое излучение Солнца, губительное для живых организмов, породило химическую эволюцию, благодаря ко­торой возникли аминокислоты. Под воздействием ультрафиолетового излучения процессы разложения водяного пара привели к образованию кислорода и создали слой озона, который препятствовал проник­новению ультрафиолетовых лучей на поверхность Земли. До тех пор, пока не было атмосферного кислорода, жизнь могла развиваться толь­ко под защитой слоя воды, который был органичен глубиной, на кото­рую проникали солнечные лучи. Под воздействием давления отбора появились фотосинтезирующие организмы, которые синтезировали ор­ганическое вещество и кислород. Первые многоклеточные организмы появились после того, как содержание кислорода в атмосфере достигло 3 % от современного содержания. Образование атмосферы, содержа­щей кислород, привело к новому состоянию устойчивого равновесия. Благодаря способности зеленых растений водных экосистем продуци­ровать кислород в количествах, превышающих их потребности, созда­лись условия для возникновения жизни на суше и быстрого заселения организмами всей поверхности Земли. Это в свою очередь создало ус­ловия, при которых потребление и образование кислорода уравнялось и достигло отметки 20 %. Затем наблюдались колебания отношений кислорода к углекислому газу, и, вероятно, на определенной стадии развития произошло повышение содержания углекислого газа в атмос­фере, что послужило толчком к образованию ископаемого топлива. Далее соотношение кислорода и углекислого газа опять пришло в коле­бательное стационарное состояние. Бурное развитие промышленности, деградация и преобразование человеком экосистем, сжигание ископа­емого топлива и в результате — избыточное образование углекислого газа может опять сделать это соотношение нестабильным.

Следовательно, равновесие — это неотъемлемый элемент функ­ционирования природы, с которым человек должен считаться как с объективным законом природы, значение которого он только начинает осознавать.

По виду обмена веществом и энергией с окружающей средой систе­мы классифицируют следующим образом: 1) изолированные системы (обмен невозможен); 2) замкнутые системы (обмен веществом невоз­можен, а обмен энергией может происходить в любой форме); 3) откры­тые системы (возможен любой обмен веществом и энергией).

Системы, которые взаимосвязаны потоками вещества, энергии и информации, носят название динамических. Любая живая система представляет собой динамическую открытую систему.

Принцип эволюции: возникновение, существование и развитие всех экосистем обусловлено эволюцией. Динамические самоподдер­живающиеся системы эволюционируют в сторону усложнения и воз­никновения системной иерархии (образование подсистем). Эволюция любой экосистемы ведет к увеличению суммарного потока энергии, проходящей через нее. С увеличением разнообразия и сложности системы происходит ускорение эволюции, что выражается в более быстром прохождении ступеней, эквивалентных по качественным сдвигам (Акимова, Хаскин, 1998).

Все без исключения экосистемы и даже самая крупная — био­сфера — являются открытыми, поэтому для своего функционирова­ния они должны получать и отдавать энергию. По этой причине кон­цепция экосистемы должна учитывать существование связанных между собой и необходимых для функционирования и самоподдержа­ния потоков энергии на входе и выходе, то есть реальная функциони­рующая экосистема должна иметь вход и, в большинстве случаев, пути оттока переработанной энергии и веществ.

Масштабы изменений среды на входе и выходе сильно варьиру­ются и зависят от:

– размеров системы: чем она меньше, тем больше зависит от внешних воздействий;

– интенсивности обмена: чем интенсивнее обмен, тем больше при­ток и отток;

– сбалансированности автотрофных и гетеротрофных процессов: чем сильнее нарушено это равновесие, тем больше должен быть при­ток энергии извне;

– стадии и степени развития системы: молодые системы отличают­ся от зрелых.

Энергия солнечного света поступает в экосистему, где фотоавтотрофными организмами превращается в химическую энергию, ис­пользуемую для синтеза органических соединений из неорганических. Поток энергии направлен в одну сторону: часть поступающей энергии Солнца преобразуется сообществом и переходит на качественно бо­лее высокую ступень, трансформируясь в органическое вещество, ко­торое представляет собой более концентрированную форму энергии, чем солнечный свет; большая же часть энергии проходит через сис­тему и покидает ее. В принципе, энергия может накапливаться, затем высвобождаться или экспортироваться, как показано на схеме (рис. 1), но не может использоваться вторично.

В отличие от энергии элементы питания и вода, необходимые для жизни, могут использоваться многократно. После отмирания живых организмов органические вещества разлагаются и опять превраща­ются в неорганические соединения. В совокупности экосистему мож­но представить как единое целое, в котором биогенные вещества из абиотического компонента включаются в биотический и обратно, то есть происходит постоянный круговорот веществ с участием живого (биотического) и неживого (абиотического) компонентов.

Для стабильного и длительного функционирования экосистемы особенно важное значение имеют обратные связи, обеспечивающие ее авторегуляцию и саморазвитие. Поэтому независимо от вида сис­темы ее функционирование возможно только при наличии прямых (взаимная стимуляция роста и развития организмов) или обратных (например, угнетение развития популяции в результате давления хищника) связей.

В саморегулирующихся системах, к которым относятся и экосисте­мы, важная роль принадлежит отрицательным обратным связям. На принципе отрицательной обратной связи базируются все механизмы физиологических функций в любом организме и поддержание посто­янства внутренней среды и внутренних взаимосвязей любой саморе­гулирующейся системы.

Рассмотрим это положение на примере самоочищения водоемов. Допустим, что под влиянием внешних факторов (поступление в водо­ем плодородной почвы и элементов питания) началось усиленное развитие фитопланктона. Это приводит к усилению роста зоопланкто­на и уменьшению концентрации минеральных веществ, что способ­ствует более быстрому выеданию фитопланктона и уменьшению его роста. Через некоторое время происходит снижение размножения животных из-за недостатка пищи. Временное увеличение биомассы гидробионтов ведет к нарастанию массы детрита, который, являясь пищей для бактерий, вызывает их усиленное размножение. Бактерии, в свою очередь, разлагают детрит и тем самым высвобождают эле­менты питания. Таким образом, цикл замыкается и в водоеме вновь появляются условия для усиленного развития фитопланктона. Систе­ма в целом имеет отрицательный обратный знак.

Положительные обратные связи, наоборот, не способствуют регу­ляции, а вызывают дестабилизацию систем, приводя их либо к угнетению и гибели, либо к ускорению роста, за которым, как правило, следуют срыв и разрушение. Например, в любом растительном сооб­ществе плодородие почвы, урожай растений, количество отмерших растительных остатков и образовавшегося гумуса составляет контур обратных положительных связей. Такая система находится в неустой­чивом равновесии, так как потеря почвы и элементов питания в ре­зультате эрозии или изъятие части урожая без возмещения выноса питательных веществ дает толчок к снижению плодородия почв и продуктивности растений. С этим явлением столкнулись наши предки в эпоху подсечно-огневого земледелия, когда в результате изъятия продукции без возмещения выноса резко снижалось плодородие почв, что вынуждало людей оставлять одни участки и осваивать новые.

В сложных экосистемах всегда имеется сочетание контуров обоих знаков. В случае наличия контуров с большим числом связей реали­зуется правило, которое гласит: при четном числе последовательных отрицательных связей контур приобретает положительную обратную связь (минус и минус дают плюс). Однако развитие и устойчивое функционирование экосистем в итоге определяется наличием конту­ров обратной связи. Для изменения поведения системы важное зна­чение имеет добавление или изъятие связей, которые могли бы из­менить знак системы (Акимова, Хаскин, 1998).

Таким образом, составляющие экосистемы — это поток энергии, круговорот веществ, биотический и абиотический компоненты и уп­равляющие петли обратной связи.

 


Лекция 5,6

 

Структура экосистемы

Структура экосистемы представляет собой компоненты, входящие в ее состав, их связи между собой и с элементами природной среды.

С биологической точки зрения в составе экосистемы выделяют следующие компоненты:

неорганические вещества (С, N2, CO2, Н2О и т.д.), включающиеся в круговорот;

органические соединения (белки, углеводы, липиды и т.д.), свя­зывающие биотическую и абиотическую части; I

воздушную, водную и субстратную среду, а так же климатичес­кий режим и другие физические факторы среды;

продуценты — автотрофные организмы, в основном зеленые растения, которые могут производить органические вещества из про­стых неорганических соединений;

консументы — фаготрофы (от греч. phagos — пожиратель) гете­ротрофные организмы, в основном животные, питающиеся другими организмами или частицами органического вещества;

редуценты — сапротрофы (от греч. sapros — гнилой), деструкто­ры, гетеротрофные организмы, в основном бактерии и грибы, получа­ющие энергию либо путем разложения мертвых тканей, либо путем поглощения растворенного органического вещества, выделяющегося самопроизвольно или извлекаемого сапрофитами из растений и дру­гих организмов. Разложение осуществляется до простых минераль­ных веществ, которые могут использоваться продуцентами.

С точки зрения трофической (от греч. tropne — питание) структу­ры экосистему можно разделить по вертикали на два яруса:

1) верхний автотрофный (самостоятельно питающийся) ярус, или «зеленый пояс», включающий растения либо их части, содержа­щие хлорофилл, где преобладает фиксация энергии Солнца, использу­ются простые неорганические соединения и происходит накопление сложных органических соединений;

2) нижний — гетеротрофный (питаемый другими) ярус, или «ко­ричневый пояс» почв и осадков, разлагающихся частей отмерших организмов, в котором преобладают использование, трансформация и разложение сложных соединений.

Особенно четко эти два трофических яруса представлены в глубо­ководных водоемах (океанах, морях, озерах).

 








Дата добавления: 2018-03-01; просмотров: 4409;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.014 сек.