Число и цифра О. Десяток
Наиболее сложными понятиями в данной теме являются число и цифра 0.
Знакомство ребенка с нулем представляет отдельную м#"я дическую проблему, поскольку нуль не является натуральны* числом. При знакомстве с нулем нельзя ссылаться на счет п |им1 метов, невозможно выстроить предметную модель нуля. В тематике нуль определяют как символ пустого множест
Для знакомства с нулем можно использовать следую ситуацию.
Педагог выставляет на фланелеграф несколько изобр; ний любых предметов или фигур и просит детей обозначит количество цифрой. Затем ситуация изменяется: предм убираются или добавляются, при этом конечный результат же обозначается цифрой. В один из моментов педагог сни с фланелеграфа все фигуры и просит детей обозначить ци конечный результат. Поскольку на фланелеграфе не ост, ни одной фигуры, для обозначения пустого множества п добится цифра 0. В данной ситуации педагогу легко объяс ее появление необходимостью обозначить отсутствие п метов, подлежащих счету.
Вопрос о месте нуля среди других чисел является важ для правильного формирования представления о натураль ряде. В школе данный вопрос рассматривают после знакомо ва со всеми числами первого десятка и после того, как ребенок освоился с тем, что числа в ряду располагаются в определен" ном порядке, у каждого из них есть свое, четко определенн: место, которое не может меняться ни при каких обстоятельствах. Имеет смысл следовать той же методической последовательности и при изучении чисел с дошкольниками.
При этом не стоит располагать последовательность ци 0123456789 на стене группы для того, чтобы она часто попадалась на глаза ребенку. Ребенок фиксирует (запоминает) ряд в таком виде, будучи убежден, что нуль — первое число в ряду, т. е. что нуль — натуральное число. В дальнейшем этот стереотип бывает трудно преодолеть.
Вопрос о месте нуля в ряду чисел связывается с процессом построения количественной модели натурального ряда чисел. Построение этой модели возможно после того, как дети освоятся с процессом установления взаимно однозначного соответствия между множеством предметов, его численной характеристикой и цифровым обозначением этой количественной характеристики. Количественной моделью натурального ряда может служить, например, лесенка из кубиков, где каждая следующая ступенька содержит на один кубик больше, или любой счетный материал — палочки, кружки и т. п. В этой модели важна наглядность «с первого взгляда», т. е. здесь полезнее выстраивать такие модели, которые сразу позволяют увидеть, что разница между соседними группами составляет один предмет. Такие модели называют количественными моделями натурального ряда. Например:
1 2 3 4 5 6 7
При построении такой модели важно, чтобы ребенок понимал ее смысл и умел строить ее самостоятельно. Технология ее построения отражает принцип построения натурального ряда чисел: каждая следующая группа — это «столько же и еще один». Понимание этого принципа избавляет от постоянного утомительного пересчета элементов модели. Таким образом, понимание общего принципа построения натурального ряда делает сложные и громоздкие на первый взгляд моделирующие действия совсем простыми.
Опираясь на смысл этой модели, устанавливают место нуля в ряду чисел: поскольку его модель — это пустое множество, т. е. в нем нет ни одной фигурки, то это число можно поставить только перед числом один. В школе подтверждение этого дедуктивного (теоретического) вывода о месте числа нуль в ряду чисел ищут в операции сравнения чисел, для подтверждения чего сравнивают нуль с другими числами. Реально это можно сделать только после знакомства со знаком сравнения и всеми цифровыми обозначениями однозначных чисел, поскольку процесс сравнения чисел нужно записывать (ведь нуль никак не обозначишь соответствующим количеством предметов).
Дата добавления: 2017-12-05; просмотров: 1062;