Модели институционального поведения
Игра «Дилемма заключенных»
Рассмотрим ситуацию, когда задержаны два человека по подозрению в совершении преступления. Следствие, однако, не располагает достаточными уликами, позволяющими передать дело в суд, и потому провоцирует их на добровольное признание. Каждому из задержанных предлагается сделка такого рода. Если оба сознаются, то каждый получит по 5 лет тюрьмы. Если один сознается, возложив вину на другого, то первый будет немедленно отпущен на свободу после проведения одного года в предварительном заключении, а второй получит суровый приговор – 10 лет лишения свободы. Если же ни один из них не сознается, дело будет невозможно закончить, и оба проведут в тюрьме по 2 года – максимально возможный срок предварительного заключения.
Матрица выигрышей данной игры, которую определяют как «Дилемма заключенных», имеет две строки и два столбца, поскольку каждый игрок может выбрать одну из двух стратегий поведения: «Сознаваться» и «Не сознаваться». Все элементы этой матрицы отрицательны, поскольку в любом случае каждый заключенный проведет некоторое время в тюрьме, получив отрицательный «выигрыш» (табл. 1).
Таблица 1 – Игра «Дилемма заключенных»
Заключенный 1 | Заключенный 2 | |
Сознаваться | Не сознаваться | |
Сознаваться | -5; -5 | -1;-10 |
Не сознаваться | -10;-1 | -2; -2 |
Реализуя несолидарныестратегии поведения, заключенные выберут вариант поведения «Сознаваться» и получат по 5 лет тюрьмы. Остановимся на этом варианте поведения подробнее.
Во-первых, стратегия «Сознаваться» является доминирующей по отношению к стратегии «Не сознаваться», поэтому последняя является нерациональной.
Во-вторых, стратегия «Сознаваться» является осторожной стратегией для каждого игрока. Следуя ей, заключенный получает гарантию, что его срок заключения не превысит 5 лет (значение максимина) независимо от действий другого заключенного.
В-третьих, стратегия «Сознаваться» является равновесной для каждого заключенного. Отклонение от нее, т.е. выбор варианта поведения «Не сознаваться», приведет к увеличению срока заключения на 5 лет – с 5 до 10 лет. Прирост срока заключения в данном случае равен эффекту отклонения. Тот факт, что единственной равновесной точке матрицы выигрышей отвечает стратегия «Сознаваться», означает, что при доминировании несолидарных видов поведения в обществе складывается институциональная норма, требующая от индивидов признания своей вины.
В-четвертых, инновационное поведение заключенного в данном случае нецелесообразно, поскольку равновесие единственно. Если он все же систематически отклоняется от равновесной стратегии, отказываясь сознаваться в преступлениях (предполагается, что его арестовывают весьма часто), то в результате он добьется лишь увеличения суммарного срока заключения за период экспериментирования и в итоге будет вынужден вернуться к исходной равновесной стратегии «Сознаваться».
Рассмотрим теперь солидарное поведение заключенных, которое приводит к сокращению срока заключения каждого из них. Имеется в виду ситуация, когда заключенные договорились (заранее или после задержания) не признаваться в совершении преступления. Как следует из матрицы выигрышей, в этом случае они получат лишь по два года заключения, а не по 5 лет, как в случае несолидарного поведения. Таким образом, солидарное поведение оказалось выгоднее для игроков, чем любой вид несолидарного поведения. Если нормы общественной жизни устроены по типу игровой матрицы заключенных в том смысле, что они делают более выгодным солидарное поведение индивидов, то в обществе начинает доминировать именно этот вид поведения. И тогда «экономический человек» окончательно уступает место «институциональному человеку», для которого внутренние этические нормы обеспечивают выполнение более выгодных согласованных стратегий, которые не могут быть реализованы при несолидарном поведении.
Игра «Конкуренция дуополий»
Главная особенность игры «Дилемма заключенных» состоит в том, что основные виды несолидарного поведения задаются стратегиями «Сознаваться», в то время как солидарное поведение задается нерациональными стратегиями «Не сознаваться». Но, как показывает практика, солидарное поведение весьма реалистично описывает ситуацию с заключенными. В данном подразделе будет показано, что солидарное поведение играет важную роль в деятельности хозяйственных субъектов. Мы убедимся, что поведение конкурирующих фирм нередко описывается матрицей выигрышей, аналогичной матрице выигрышей игры «Дилемма заключенных».
Рассматривается ситуация, когда на рынке имеются всего две фирмы. В этом случае их называют дуополиями. Каждая фирма имеет два варианта поведения: производить большой объем продукта («Большой выпуск») или его небольшой объем («Небольшой выпуск»). Если обе фирмы одновременно производят небольшой выпуск, то общий объем продукта на рынке невелик, что вызывает рост цены и обеспечивает каждой фирме высокую прибыль в размере 3. Если обе фирмы одновременно производят большой выпуск, то рынок переполняется, что вызывает падение цены и обеспечивает каждой фирме низкую прибыль в размере 2. Если одна фирма производит большой выпуск, а другая – низкий, то на рынке предлагается среднее количество продукта по средней цене. При этом фирма, производящая большой выпуск, получает максимальную прибыль 4, а фирма, производящая небольшой выпуск, — минимальную прибыль 1.
Матрица выигрышей данной игры, которую называют «Конкуренция дуополий», имеет две строки и два столбца, поскольку каждый игрок может выбрать одну из двух стратегий поведения (табл. 2).
Таблица 2 – Игра «Конкуренция дуополий»
Дуополия 1 | Дуополия 2 | |
Большой выпуск | Небольшой выпуск | |
Большой выпуск | 2; 2 | 4; 1 |
Небольшой выпуск | 1; 4 | 3;3 |
Рассмотрим несолидарные стратегии поведения дуополий.
Во-первых, стратегия «Большой выпуск» является доминирующей, поэтому стратегия «Небольшой выпуск» является нерациональной.
Во-вторых, стратегия «Большой выпуск» является осторожной стратегией для каждой дуополии. Следуя ей, фирма получает гарантию, что ее прибыль не упадет ниже 1 (значения максимина) независимо от действий другой фирмы.
В-третьих, стратегия «Большой выпуск» является равновесной для каждой фирмы. Отклонение от нее приводит к уменьшению прибыли фирмы на величину эффекта отклонения, равную 2. Факт наличия единственной точки равновесия означает, что при доминировании в обществе несолидарных видов поведения в хозяйственной практике складывается традиция производить и продавать максимально возможное количество продукта.
В-четвертых, инновационное поведение дуополий в данном случае нецелесообразно, поскольку равновесие единственно. Если фирма все же станет систематически производить небольшой выпуск, то тем самым она лишь сократит свою прибыль.
Солидарное поведение дуополий, или сговор, заключается в систематическом выпуске небольшого количества продукта каждой фирмой. При этом каждая дуополия имеет возможность нарушить данное соглашение, увеличив выпуск, и на некоторый период времени получить максимальную прибыль. Однако такое поведение дуополии, скорее всего, повлечет за собой аналогичный шаг конкурента, в результате чего прибыль каждой дуополии существенно сократится. Поэтому дуополии заинтересованы в соблюдении соглашения о солидарных стратегиях поведения.
Игра «Конфликт полов»
Рассмотрим ситуацию, когда мужчина и женщина проводят вечер после работы либо в театре, либо на футболе, делая выбор места отдыха независимо друг от друга. Они симпатизируют друг другу, поэтому каждый из них предпочитает провести вечер вместе, а не порознь. Для мужчины футбол более интересен, чем театр, а для женщины, наоборот, театр предпочтительнее. В данном случае выигрыш игрока измеряется объемом положительных эмоций, или удовольствием, полученным человеком за вечер.
Опишем матрицу выигрышей данной игры. Если встреча мужчины и женщины произошла в театре, то женщина получает максимальный выигрыш, равный 2, ‒ она проводит вечер в желательном месте с желаемым человеком. Мужчина получает при этом меньший выигрыш, равный 1, ‒ он находится в нежелательном месте с желаемым человеком. Если встреча произошла на футболе, то, наоборот, мужчина получает выигрыш 2, а женщина ‒ выигрыш 1. Если мужчина провел вечер на футболе, а женщина в театре, то каждый из них получит небольшой выигрыш 0,5 ‒ он и она провели вечер порознь, но в желательных для них местах. Если мужчина провел вечер в театре, а женщина — на футболе, то их выигрыши равны нулю, поскольку они провели вечер порознь и в нежелательных для них местах.
Матрица выигрышей данной игры, которую называют «Конфликт полов», имеет две строки и два столбца, поскольку каждый игрок может выбрать одну из двух стратегий: «Театр» и «Футбол». Все элементы этой матрицы неотрицательны: в трех из четырех случаев каждый игрок получает какое-либо удовольствие от проведенного вечера, и лишь в одном случае выигрыши равны нулю (табл. 3).
Таблица 3 – Игра «Конфликт полов»
Женщина | Мужчина | |
Театр | Футбол | |
Театр | 2; 1 | 0,5; 0,5 |
Футбол | 0; 0 | 1;2 |
Рассмотрим несолидарные стратегии поведения мужчины и женщины и их возможные последствия.
Во-первых, в данной игре не существует нерациональных стратегий игроков. Это значит, что ни один из возможных вариантов поведения мужчины и женщины не является априори невозможным.
Во-вторых, осторожной стратегией для женщины является стратегия «Театр»: даже если мужчина не придет в театр, она получит гарантированное удовлетворение от спектакля, равное 0,5 (максимин). Для мужчины осторожной стратегией является «Футбол», она также гарантирует ему выигрыш не меньше 0,5.
В-третьих, в данной игре имеются две равновесные тонки. Равновесие (2; 1) отвечает ситуации, когда мужчина и женщина традиционно встречаются в театре. Если один из них переключится на отклоняющуюся стратегию, его выигрыш уменьшится. При этом эффект отклонения (точнее, его модуль) у женщины будет больше, чем у мужчины (2 против 0,5), поскольку она «отклоняется» в сторону нежелательного футбола, а мужчина – в сторону желательного футбола. Равновесие (1; 2) отвечает ситуации, когда мужчина и женщина традиционно встречаются на футболе. В этом случае эффект отклонения у женщины будет меньше, чем у мужчины (0,5 против 2), поскольку она «отклоняется» в сторону желательного театра, а мужчина – в сторону нежелательного театра.
В-четвертых, инновационное поведение игроков зависит от исходной точки равновесия. Если встречи традиционно происходят в театре, то выигрыш мужчины неизменно меньше, чем у женщины (1 против 2). Для него выгоден переход в другую точку равновесия, где его выигрыш больше. Чтобы перейти в новую точку равновесия, он может переключиться на инновационное поведение, т.е. каждый вечер ходить не в театр, а на футбол. Такое поведение мужчины может побудить женщину также со временем изменить своей традиции и начать посещать футбол. Но если институционализированные нормы поведения женщины не позволяют ей в данной ситуации изменить свою прежнюю равновесную стратегию, то цели инновационного поведения мужчины не будут достигнуты и он, скорее всего, снова начнет посещать театр. В случае, когда встречи традиционно происходят на футболе, выигрыш мужчины больше, чем у женщины (2 против 1). Для женщины выгоден переход в другую точку равновесия, где ее выигрыш больше. Она может перейти на инновационное поведение, т.е. каждый вечер ходить не на футбол, а в театр. Если в результате мужчина также изменит свою исходную стратегию, то женщина добьется своей цели, в противном случае ей будет выгодней вернуться к посещению футбольных матчей.
В данной игре инновационные стратегии мужчины и женщины носят антагонистический характер, что порождает некоторую нестабильность межчеловеческих взаимоотношений. Эта проблема может быть решена с помощью согласованного поведения игроков, которое заключается в чередовании равновесных точек и соответствующих стратегий игроков. Так, мужчина и женщина могут договориться, что по четным дням они посещают театр, а по нечетным ‒ футбол. Тогда суммарные выигрыши игроков за любой период времени будут приблизительно одинаковыми.
Игра «Встреча студентов»
В описанной выше игре взаимодействие мужчины и женщины характеризовалось двумя разнонаправленными и близкими по силе воздействия факторами: фактором сближения (взаимная симпатия) и фактором отталкивания (противоположность интересов). Здесь будет рассмотрена ситуация, когда действует только фактор сближения (дружба и совпадение интересов). При этом согласованное поведение игроков будет иным, чем в случае «конфликта полов».
Рассмотрим ситуацию, когда два студента проводят время после занятий либо в буфете, либо в библиотеке, делая выбор места времяпрепровождения независимо друг от друга. Они являются друзьями, поэтому предпочитают проводить время вместе. Совместное посещение буфета служит для них лучшим занятием – выигрыш каждого максимален и равен 3. При совместном посещении библиотеки удовлетворение каждого будет меньше, поскольку здесь меньше возможностей для развлечений (громкий разговор, потребление еды и напитков и т.д.). В этом случае выигрыш каждого студента составляет 2. Проведение времени порознь друзья считают скучным, что выражается в низких значениях выигрыша, отвечающих парам несовпадающих стратегий. Совпадение интересов студентов выражается в том, что каждый из них по отдельности предпочитает библиотеку буфету: посещение библиотеки без друга оценивается выигрышем 1, в то время как посещение буфета – нулевым выигрышем.
Матрица выигрышей данной игры, которую называют «Встреча студентов», имеет две строки и два столбца, поскольку каждый студент может выбрать одну из двух стратегий: «Буфет» и «Библиотека» (табл. 4).
Таблица 4 – Игра «Встреча студентов»
Студент 1 | Студент 2 | |
Буфет | Библиотека | |
Буфет | 3; 3 | 0; 1 |
Библиотека | 1; 0 | 2; 2 |
Рассмотрим несолидарные стратегии поведения игроков.
Во-первых, в данной игре не существует нерациональных стратегий поведения.
Во-вторых, осторожной стратегией для каждого студента является стратегия «Библиотека», при этом гарантированный выигрыш, или максимин, равен единице. Напомним, что в случае «конфликта полов» осторожные стратегии игроков были различными.
В-третьих, в данной игре имеются две равновесные точки. Равновесие (3; 3) описывает ситуацию, когда друзья традиционно встречаются в буфете. При этом эффект отклонения (его модуль) для каждого студента равен двум (3 минус 1). Равновесие (2; 2) описывает ситуацию, когда друзья традиционно встречаются в библиотеке. При этом эффект отклонения в данной точке также равен двум для каждого студента (2 минус 0).
В-четвертых, инновационное поведение студентов имеет смысл в точке равновесия (2; 2), оно нацелено на переход в новую точку равновесия (3; 3), которая предпочтительнее для обоих студентов. Поэтому в данном случае инновационные стратегии носят неантагонистический характер, в отличие от игры «Конфликт полов». Систематическое отклонение одного студента от стратегии «Библиотека» и выбор им варианта поведения «Буфет» будет, скорее всего, с радостью поддержано аналогичным поведением другого студента. В результате традиционное место встречи друзей будет перенесено из библиотеки в буфет.
Согласование стратегий игроков в данном случае является ненужной процедурой, поскольку в результате инновационного поведения рано или поздно будет достигнуто равновесное состояние (3; 3), которое является наилучшим для обоих игроков. В силу этого стабильность выбора стратегии «Буфет» будет обеспечиваться автоматически без участия каких-либо институциональных механизмов (этических, властных и др.).
Таблица 5 – Игра «Встреча студентов»
Студент 1 | Студент 2 | |
Буфет | Библиотека | |
Буфет | 3; 3 | 0; 1 |
Библиотека | 1; 0 | 2; 2 |
Рассмотрим несолидарные стратегии поведения игроков.
Во-первых, в данной игре не существует нерациональных стратегий поведения.
Во-вторых, осторожной стратегией для каждого студента является стратегия «Библиотека», при этом гарантированный выигрыш, или максимин, равен единице. Напомним, что в случае «конфликта полов» осторожные стратегии игроков были различными.
В-третьих, в данной игре имеются две равновесные точки. Равновесие (3; 3) описывает ситуацию, когда друзья традиционно встречаются в буфете. При этом эффект отклонения (его модуль) для каждого студента равен двум (3 минус 1). Равновесие (2; 2) описывает ситуацию, когда друзья традиционно встречаются в библиотеке. При этом эффект отклонения в данной точке также равен двум для каждого студента (2 минус 0).
В-четвертых, инновационное поведение студентов имеет смысл в точке равновесия (2; 2), оно нацелено на переход в новую точку равновесия (3; 3), которая предпочтительнее для обоих студентов. Поэтому в данном случае инновационные стратегии носят неантагонистический характер, в отличие от игры «Конфликт полов». Систематическое отклонение одного студента от стратегии «Библиотека» и выбор им варианта поведения «Буфет» будет, скорее всего, с радостью поддержано аналогичным поведением другого студента. В результате традиционное место встречи друзей будет перенесено из библиотеки в буфет.
Согласование стратегий игроков в данном случае является ненужной процедурой, поскольку в результате инновационного поведения рано или поздно будет достигнуто равновесное состояние (3; 3), которое является наилучшим для обоих игроков. В силу этого стабильность выбора стратегии «Буфет» будет обеспечиваться автоматически без участия каких-либо институциональных механизмов (этических, властных и др.).
Игра «Проверка знаний»
Рассмотрим ситуацию, когда преподаватель систематически проводит аттестацию студента. При этом он может проверять знания студента, а может не делать этого, выставляя некоторую среднюю оценку автоматически. Студент, в свою очередь, может подготовиться к аттестации, а может не делать этого. Если студент подготовится, а преподаватель проверит, то студент получит максимальный выигрыш 2, обусловленный высокой формальной оценкой, моральным удовлетворением, поощрением преподавателя. Преподаватель также получит максимальный выигрыш 1, обусловленный удовлетворением от хорошо выполненной работы и уважительного отношения студента к предмету и преподавателю. Если студент не подготовится, а преподаватель проверит, то студент получит минимальный выигрыш – 2 (низкая формальная оценка, внутренняя неудовлетворенность, осуждение преподавателя и сокурсников). Преподаватель также получит минимальный выигрыш -1 (свидетельство педагогического брака и неуважения к предмету и преподавателю). Если студент подготовится, а преподаватель не проверит, то студент испытает некоторое разочарование, которое оценивается выигрышем – 1. Если же студент не подготовится, а преподаватель не проверит, то студент испытает удовлетворение от того, что он смог получить положительную аттестацию без каких-либо усилий. Эта радость студента оценивается выигрышем 1. Преподаватель не испытывает ни положительных, ни отрицательных эмоций, поскольку он не общается со студентом. Поэтому в двух последних случаях его выигрыш равен нулю.
Матрица выигрышей данной игры, которую называют «Проверка знаний», имеет две строки и два столбца, поскольку студент и преподаватель могут выбрать одну из двух соответствующих стратегий (табл. 6).
Рассмотрим несолидарные стратегии поведения игроков.
Во-первых, в данной игре не существует нерациональных стратегий поведения.
Таблица 6 – Игра «Проверка знаний»
Студент | Преподаватель | |
Проверять | Не проверять | |
Готовиться | 2; 1 | -1; 0 |
Не готовиться | -2; -1 | 1; 0 |
Во-вторых, осторожной стратегией студента является стратегия «Готовиться», она уберегает его от стресса, связанного с разоблачением недобросовестного поведения. Осторожной стратегией для преподавателя является стратегия «Не проверять», она избавляет его от негативных эмоций, возникающих при общении с недобросовестным студентом.
В-третьих, в данной игре имеются две равновесные точки. Равновесие (2; 1) описывает ситуацию напряженного обучения, когда студент систематически готовится, а преподаватель систематически проверяет знания. Модуль эффекта отклонения для студента в этом случае весьма значителен и равен 4, а для преподавателя он равен единице. Равновесие (1; 0) описывает ситуацию имитации обучения, когда студент систематически не готовится, а преподаватель систематически не проверяет знания. Эффект отклонения в данном случае составляет для студента – 2, для преподавателя – 1.
В-четвертых, инновационное поведение студента и преподавателя имеет смысл в точке равновесия (1; 0), оно нацелено на переход в новую точку равновесия (2; 1), которая предпочтительнее для каждого из них. Поэтому в данном случае инновационные стратегии игроков носят неантагонистический характер. Инновационная стратегия студента состоит в переключении на добросовестное поведение. В результате преподаватель убедится в подготовленности студента и может начать проверять его знания. Инновационное поведение преподавателя состоит в переходе на стратегию систематической проверки знаний, которая, скорее всего, побудит студента к добросовестному поведению.
Согласование стратегий игроков в данном случае является ненужной процедурой, поскольку в результате инновационного поведения студент и преподаватель рано или поздно предпочтут напряженное обучение имитации учебной деятельности.
Игра «Права собственности»
Рассмотрим ситуацию, когда два пастуха могут пасти свои стада коров на двух пастбищах, одно из которых менее плодородно. Предполагается, что каждый пастух является собственником своего стада и стремится максимизировать удои молока. Собственность на землю отсутствует, и каждый пастух может свободно выбирать пастбище для выгона скота. Количество коров в каждом стаде одинаково. Запасы кормов на каждом пастбище таковы, что позволяют получать максимальные удои молока 8 л в день в случае, когда на нем пасется только одно стадо. Но если на плодородном пастбище пасутся два стада одновременно, то кормов не хватает на всех коров, в результате чего удои снижаются до 2 л. Если же оба стада пасутся на неплодородном пастбище, то каждой корове достается еще меньше кормов, а удои достигают минимального уровня 1 л. Если на неплодородном пастбище пасется только одно стадо, то удои в этом стаде составляют 4 л. Матрица выигрышей данной игры, которую называют «Права собственности», имеет две строки и два столбца, поскольку каждый пастух может выбрать одну из двух стратегий: «Плодородное пастбище» и «Неплодородное пастбище» (табл. 7).
Таблица 7 – Игра «Права собственности»
Пастух 1 | Пастух 2 | |
Плодородное пастбище | Неплодородное пастбище | |
Плодородное пастбище | 2; 2 | 8; 4 |
Неплодородное пастбище | 4; 8 | 1; 1 |
Рассмотрим несолидарные стратегии поведения пастухов.
Во-первых, в данной игре не существует нерациональных стратегий.
Во-вторых, осторожной стратегией для каждого пастуха является выбор плодородного пастбища, при этом минимально гарантированный удой (максимин) составляет 2 л.
В-третьих, в данной игре имеются две равновесные точки, они отвечают парам различных равновесных стратегий игроков, т.е. ситуациям, когда пастухи выгоняют свои стада на разные пастбища. В каждой точке равновесия положение пастухов неодинаково: пастух, использующий плодородное пастбище, получает большие удои, чем пастух, стадо которого пасется на неплодородном пастбище. Если исходное равновесие отвечает клетке (4; 8), то отклонение первого игрока от исходной равновесной стратегии приведет к его встрече с другим пастухом на плодородном пастбище. В результате удои в первом стаде уменьшатся на 2 л, а во втором – на 4 л. Иными словами, эффект отклонения для первого и второго пастухов составит 2 л и 4 л соответственно.
В-четвертых, инновационное поведение пастуха зависит от исходной точки равновесия. Если первый пастух традиционно использует неплодородное пастбище, то его выигрыш неизменно меньше, чем у другого пастуха (4 л против 8 л). Для него выгоден переход в другую точку равновесия, где его выигрыш больше. Чтобы перейти в новое равновесное состояние, он может переключиться на инновационное поведение, т.е. ежедневно выгонять свое стадо на уже занятое плодородное пастбище.
Дата добавления: 2017-11-04; просмотров: 1239;