Управляемость и наблюдаемость

В п-мерном пространстве состояний каждому состоянию системы соответствует не­которое положение изображающей точки, определяемое значениями переменные состояния (i = 1, 2,... п).

Пусть в пространстве состояний заданы два множества и . Рассматриваемая система будет управляемой, если существует управление , определенное на конечном интерва­ле времени 0<t<T, переводящее изображающую точку в пространстве из подобласти G1 в подобласть G2.

Система называется наблюдаемой, если в формирова­нии вектора выходных координат участвуют все состав­ляющие вектора переменных состояния . Если ни одна из составляющих вектора не влияет на формирование выхода системы , то такая система будет ненаблюдаемой.

Анализ управляемости и наблюдаемости выполняется с помощью матриц управляемости и наблюдаемости или с помощью грамианов управляемости и наблюдаемости.

Сформируем на основе матриц , , две вспомогательные матрицы

R = [ , , ..., n-1 ], D = [ , ,…, n-1]

Mатрицы R и D называются соответственно матрицей управляемости и матрицей наблюдаемости системы. В пакете MATLAB их можно построить с помощью команд ctrbи obsv.

Для того чтобы система (3.2) была управляемой, необходимо и

достаточно, чтобы матрица управляемости имела полный ранг rankR = n.

Для того чтобы система (3.2) была наблюдаемой, необходимо и достаточно, чтобы матрица наблюдаемости имела полный ранг rankD=n.

В случае систем с одним входом и одним выходом матрицы R и D квадратные, поэтому для проверки управляемости и наблюдаемости достаточно вычислить определители матриц R и D. Если они не равны нулю, то матрицы имеют полный ранг.








Дата добавления: 2017-05-18; просмотров: 501;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.