Численное решение систем нелинейных уравнений
Постановка задачи.
Требуется решить систему нелинейных уравнений (1). В координатном виде эту задачу можно записать так: , где 1 ≤ k ≤ n.
Убедиться в существовании решения и количестве корней, а также выбрать нулевое приближение в случае системы двух уравнений с двумя неизвестными можно, построив графики функций в удобных координатах. В случае сложных функций можно посмотреть поведение аппроксимирующих их полиномов. Для трех и более неизвестных, а также для комплексных корней, удовлетворительных способов подбора начального приближения нет.
Метод Ньютона.
Обозначим некоторое приближение к корню системы уравнений . Пусть малое . Вблизи каждое уравнение системы можно линеаризовать следующим образом:
, 1 ≤ k ≤ n. (2)
Это можно интерпретировать как первые два члена разложения функции в ряд Тейлора вблизи . В соответствии с (1), приравнивая (2) к нулю, получим:
, 1 ≤ k ≤ n. (3)
Мы получили систему линейных уравнений, неизвестными в которой выступают величины . Решив ее, например, методом Гаусса, мы получим некое новое приближение к , т.е. . Выражение (3) можно представить как обобщение на систему уравнений итерационного метода Ньютона, рассмотренного в предыдущей главе:
, (4)
где в данном случае
– матрица Якоби, которая считается для каждого (s) приближения.
Критерием окончания итерационного процесса является условие (Можем принять под как норму , так и ). Достоинством метода является высокая скорость сходимости. Сходимость метода зависит от выбора начального приближения: если , то итерации сходятся к корню. Недостатком метода является вычислительная сложность: на каждой итерации требуется находить матрицу частных производных и решать систему линейных уравнений. Кроме того, если аналитический вид частных производных неизвестен, их надо считать численными методами.
Блок-схема метода Ньютона для решения систем нелинейных уравнений.
Так как метод Ньютона отличается высокой скоростью сходимости при выполнении условий сходимости, на практике критерием работоспособности метода является число итераций: если оно оказывается большим (для большинства задач >100), то начальное приближение выбрано плохо.
Частным случаем решения (4) методом Ньютона системы из двух нелинейных уравнений
являются следующие легко программируемые формулы итерационного процесса:
, где ,
,
Метод простых итераций.
Метод простых итераций для решения (1) аналогичен методу, рассмотренному при решении нелинейных уравнений с одним неизвестным. Прежде всего, выбирается начальное приближение , а исходная система уравнений преобразуется к эквивалентной системе вида
, (5)
и по ней осуществляется итерационный цикл. Если итерации сходятся, то они сходятся к решению уравнения (1). Обозначим . Достаточным условием сходимости является . Скорость сходимости метода сильно зависит от вида конкретно подбираемых функций , которые должны одновременно удовлетворять условиям эквивалентности (5) и (1), и обеспечивать сходимость итерационного процесса.
Например, для исходной системы уравнений эквивалентная итерационная система (5) может быть представлена в следующем виде:
,
где множители = –0.15и = –0.1 подбираются из анализа условий сходимости.
Метод спуска.
Рассмотрим функцию . Она неотрицательна и обращается в нуль в том и только в том случае, если . То есть, если мы найдем глобальный минимум , то полученные значения как раз и будут решениями уравнения (1). Подробнее о решении таких задач см. следующую главу.
Дата добавления: 2017-01-29; просмотров: 682;