Металлические конструкции.

Способы защиты.

Около 75 % всех металлических конструкций эксплуатируется в агрессивных средах. Наряду с повышением объемов производства отмечается его интенсификация и усиление агрессивности технологических сред.

В промышленно-развитых странах потери от коррозии достигают 4 % национального дохода. После 2 … 10 лет эксплуатации в агрессивной среде стоимость капитальных ремонтов начинает превышать капитальные вложения. Актуальна задача определения оптимальных, экономически оправданных сроков службы и применения наиболее эффективных мероприятий для обеспечения этого срока службы. Основными показателями агрессивности среды являются: относительная влажность, температура, возможность образования конденсата, состав и концентрация газов и пыли, туманы агрессивных жидкостей.

Скорость коррозии конструкций изменяется в широких пределах: для предприятий черной металлургии 0,05 … 1,6 мм/год; цветной металлургии 0,01 … 1,4 мм/год; строительной индустрии до 0,37 мм/год. Степени агрессивного воздействия приведены. Рассматриваются конструкции внутри отапливаемых или неотапливаемых зданий, под навесами, на открытом воздухе. Влажностный режим помещений подразделяют на: сухой, нормальный, мокрый или влажный. Масла (минеральные, растительные, животные) являются неагрессивными средами; нефть и нефтепродукты, растворители – слабоагрессивными; растворы органических сред – сильноагрессивными.

Предлагается дифференцированный подход к назначению материала и меры защиты от коррозионного и других видов износа разных групп конструкций. Комплекс мероприятий по обеспечению долговечности включает: снижение агрессивности среды;выбор рационального материала, конструктивной формы и типа соединений элементов; выбор защитных покрытий, способов исроков их нанесения; предупреждение местных повреждений конструкций и их узлов; правильную эксплуатацию металлических конструкций; возможность определения несущей способности с учетом коррозионного износа.

Даны рекомендации по применению марок сталей в разных агрессивных средах. Для грунтовых вод характерна суммарная концентрация сульфатов и хлоридов. При проектировании защиты стальных конструкций для разных условий эксплуатации и материалов назначают группу лакокрасочных покрытий, число покрываемых слоев, общую толщину лакокрасочного покрытия, материал металлических защитных покрытий.

Для несущих конструкций, эксплуатируемых в слабоагрессивной среде применяют: горячее цинкование (60 … 100 мкм), газотермическое напыление цинка (120 … 180 мкм), окрашивание лакокрасочными материалами.

При среднеагрессивной среде назначают: горячее цинкование (60 … 100 мкм), газотермическое напыление цинка или аммония (120 … 300 мкм); изоляционные покрытие совместное с электрохимической защитой; электрохимическую защиту в жидких средах; облицовку химически стойкими неметаллическими материалами.

В случае сильноагрессивных сред используют термодиффузионное цинкование (100 мкм) с последующим окрашиванием; газотермическое напыление цинка или аммония (200 … 250 мкм) с последующим окрашиванием; электрохимическую защиту (в жидких средах); облицовку химически стойкими материалами.

Коррозионные испытания металла включают определение: изменения массы образца; глубины проникновения коррозии; времени до появления первого коррозионного очага; площади, занятой коррозией; количества выделяющегося в процессе коррозии водорода или поглощенного кислорода; количества металла перешедшего в раствор; степени изменения механических свойств; изменения электрического сопротивления или отражательной способности поверхности металла; склонности к межкристаллитной коррозии или сплавов к коррозионному растрескиванию, к питтинговой коррозии [84].

Защита алюминиевых конструкций от коррозии.На поверхности конструкции образуется защитная окисная пленка, имеющая плотное строение и хорошее сцепление с металлом. Наличие в составе алюминиевых сплавов меди, железа, никеля и других металлов снижает плотность окислов пленки и уменьшает коррозионную способность. Добавки магния, титана, ванадия способствуют повышению коррозионной стойкости. Наличие царапин, надрезов на поверхности изделия нарушают пленку и способствуют развитию коррозии.

Толщина естественной окисной пленки составляет 0,01 … 0,015 мк. Утолщение пленки достигают оксидированием, например, анодированием. С этой целью изделие погружают в водный раствор серной или хромовой кислоты и подсоединяют к источнику тока. При прохождении тока на поверхности изделия происходит анодное выделение кислорода, а на имеющейся окисной пленке образуется новая толщиной до 20 … 25 мк.

Большую опасность представляет контактная коррозия. При контакте алюминия с медью, сталью, оловом, с раствором, бетоном возникает процесс электрохимической коррозии. Для предотвращения контактной коррозии рекомендуется:

1) крепежные детали из стали должны быть предварительно изолированы или оцинкованы;

2) бетон, раствор и кирпичную кладку изолируют от алюминия щелочноупорными материалами;

3) между деревянными деталями и алюминием необходимо проложить два-три слоя тиоколовой ленты;

4) алюминиевые детали надо оксидировать и покрывать лакокрасочными материалами;

5) в биметаллических конструкциях между элементами из алюминия и стали ставят изолирующие прокладки.

 








Дата добавления: 2017-01-13; просмотров: 888;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.