Структурные средние

 

Мода - это величина признака (варианта), наиболее часто повторяющаяся в изучаемой совокупности. Для дискретных рядов распределения модой будет значение варианта с наибольшей частотой.

Пример 8.

Распределение проданной обуви по размерам характеризуется следующими показателями:

 

размер обуви и выше
число пар, в % к итогу  
                                   

 

В этом ряду распределения мода равна 41. Именно этот размер обуви пользовался наибольшим спросом покупателей.

Для интервальных рядов распределения с равными интервалами мода определяется по формуле:

где - начальное значение интервала, содержащего моду;

- величина модального интервала;

- частота модального интервала;

- частота интервала, предшествующего модальному;

- частота интервала, следующего за модальным.

Пример 9.

Распределение предприятий по численности промышленно - производственного персонала характеризуется следующими данными:

Группы предприятий по числу работающих, чел Число предприятий
100 — 200
200 — 300
300 — 400
400 — 500
500 — 600
600 — 700
700 — 800
ИТОГО

 

В этой задаче наибольшее число предприятий (30) имеет численность работающих от 400 до 500 человек. Следовательно, этот интервал является модальным интервалом ряда распределения.

Введем следующие обозначения:

=400, =100, =30, =7, =19

 

Подставим эти значения в формулу моды и произведем вычисления:

чел.

 

 

Медиана - это варианта, расположенная в середине вариационного ряда. Если ряд распределения дискретный и имеет нечетное число членов, то медианой будет варианта, находящаяся в середине упорядоченного ряда (упорядоченный ряд - это расположение единиц совокупности в возрастающем или убывающем порядке).

Например, стаж пяти рабочих составил 2, 4, 7, 8, 10 лет. В таком упорядоченном ряду медиана - 7 лет. По обе стороны от нее находится одинаковое число рабочих.

Если упорядоченный ряд состоит из четного числа членов, то медианой будет средняя арифметическая из двух вариант, расположенных в середине ряда. Пусть теперь будет не пять человек в бригаде, а шесть, имеющих стаж работы 2, 4, 6, 7, 8 и 10 лет. В этом ряду имеются две варианты, стоящие в центре ряда. Это варианты 6 и 7. Средняя арифметическая из этих значений и будет медианой ряда:

 

Ме = (6 + 7) / 2 = 6,5 лет.

Рассмотрим пример расчета медианы в дискретном ряду.

 

 

Пример 10.

Определим медиану заработной платы рабочих.

 

Недельная з/п , руб. Число рабочих Сумма накопленных частот
8 (2+6)
24 (8+16)
   

 

Для определения медианы надо подсчитать сумму накопленных частот ряда. Наращивание итога продолжается до получения накопленной суммы частот, превышающей половину. В нашем примере сумма частот составила ее половина - 20.

Накопленная сумма частот ряда получилась равной Варианта, соответствующая этой сумме, т.е. 160 руб., и есть медиана ряда.

Если же сумма накопленных частот против одной из вариант равна точно половине сумме частот, то медиана определяется как средняя арифметическая этой варианты и последующей.

Пример 11.

Таблица 5.8.

Недельная з/п, руб. Число рабочих Сумма накопительных частот
8 (2+6)
20 (8+12)
   

 

Медиана будет равна:

 

Ме = (150 + 170) / 2 = 160 руб.

 

Рассмотрим расчет медианы в интервальном вариационном ряду.

Медиана интервального вариационного ряда распределения определяется по формуле

где — начальное значение интервала, содержащего медиану;

— величина медианного интервала;

— сумма частот ряда;

— сумма накопленных частот, предшествующих медианному интервалу;

— частота медианного интервала.

 

Пример 12.

Группы предприятий по числу рабочих Число предприятий Сумма накопительных частот
100 — 200
200 — 300 4 (1+3)
300 — 400 11 (4+7)
400 — 500 41 (11+30)
500 — 600
600 — 700
700 — 800
ИТОГО  

 

Определим прежде всего медианный интервал. В данной задаче сумма накопленных частот, превышающая половину всех значений (41), соответствует интервалу 400 - 500. Это и есть медианный интервал, в котором находится медиана. Определим ее значение по приведенной выше формуле.

Известно, что:

 

Следовательно,

.








Дата добавления: 2016-11-28; просмотров: 842;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.01 сек.