Трахеиды и сосуды (трахеи).
Трахеида представляет собой удлиненную клетку с острыми или округлыми концами и одревесневшими стенками. Поры – только окаймленные. У хвойных растений они с торусом.
Длина трахеид обычно 1...4 мм. Однако они могут быть и длиннее: у саговников до 9,5 мм, у араукарии до 10 мм, у лотоса до 12 мм. Поперечник их измеряется сотыми и десятыми долями миллиметра. Живое содержимое трахеид постепенно отмирает. Растворы передвигаются за счет фильтрации через окаймленные поры, поэтому процесс идет медленно. Большая часть окаймленных пор находится у окончаний клеток, где раствор переходит из одной трахеиды в другую.
Трахеиды встречаются у всех высших растений, а у большинства хвощей, плаунов, папоротников и голосеменных являются единственной проводящей тканью.
Сосуд состоит из многих клеток — члеников сосуда, расположенных друг над другом, образующих полые трубки. Их длина около 10 см, однако, некоторые сосуды могут достигать 2 м. Поперечные стенки соприкасающихся клеток местами растворяются. Возникают отверстия (перфорации), по которым и происходит водоток из одного членика сосуда в другой. Наиболее совершенные сосуды имеют на поперечных стенках одно большое отверстие. По сосудам растворы передвигаются значительно легче, чем по трахеидам.
Сосуды — более совершенная проводящая ткань, достигли наибольшего развития у покрытосеменных растений. К образованию сосудов привели эволюционные изменения трахеид — их укорочение, увеличение диаметра, перемещение перфораций на поперечные стенки.
Функционирующие, полностью сформированные трахеальные элементы состоят лишь из клеточных стенок, их протопласты распадаются. Растворы передвигаются и в поперечном направлении через неутолщенные участки боковых стенок или поры в них.
В зависимости от характера утолщения боковых стенок различают кольчатые, спиральные, сетчатые, лестничные и точечно-поровые трахеиды и сосуды.
Онтогенез трахеальных э л е м е н т о в — превращение меристематической клетки в зрелый членик сосуда или трахеиду – протекает быстро, иногда за несколько часов. На первых этапах в протопласте хорошо развиты структуры, принимающие участие в построении клеточных стенок, — ЭР, диктиосомы, микротрубочки. Происходят рост клетки, утолщение боковых стенок и перфорирование поперечных. Затем развиваются лизосомы, происходят сильная вакуолизация и лизис всего протопласта. Остаются клеточные стенки мертвых клеток, полость которых заполняется проводимым раствором.
Сосуды функционируют ограниченное время. Прекращение их деятельности связано с закупоркой тилами. Тилы — выросты соседних клеток, проникающие в полость сосуда через поры. Здесь они разрастаются, лигнифицируются, накапливают смолы, камеди, танины и закупоривают сосуды. Деятельность сосудов прекращается, но они сохраняются в теле растения, выполняя механические функции.
Древесные волокна (либриформ). Склеренхимные волокна выполняют опорные, иногда запасающие функции.
Древесная паренхима. Имеет живые клетки. По паренхиме, окружающей трахеальные элементы и контактирующей с ними, происходит ближний радиальный транспорт. В этих клетках накапливаются запасные вещества. Весной они превращаются в растворы сахаров и поступают в сосуды. Хотя основная функция сосудов — проведение воды и минеральных веществ, весной по ним подаются к почкам и органические вещества (пасока).
Флоэма — луб.
Флоэма или луб состоит из:
1. Проводящая ткань – ситовидные клетки и ситовидные трубки с клетками спутницами.
2. Механическая ткань – склеренхима. Во вторичном лубе называется (камбиформ).
3. Основная ткань – лубяная паренхима.
Ситовидные клетки и ситовидные трубки. Они сохраняют живой протопласт, по которому и происходит движение ассимилятов. Протопласты соседних клеток сообщаются через мелкие перфорации, собранные группами (ситовидное поле).
Ситовидная клетка сильно вытянута в длину, концы клеток заостренные, ситовидные поля рассеяны по боковым стенкам. В зрелых клетках сохраняется ядро. Ситовидные клетки присущи высшим споровым и голосеменным растениям.
Ситовидная трубка состоит из многих клеток, соединенных своими концами, на которых расположены ситовидные пластинки с многими ситовидными полями. Ситовидные пластинки обеспечивают более тесный контакт между члениками ситовидных трубок, чем ситовидные поля на боковых стенках ситовидных клеток. Это облегчает передвижение растворов. Рядом с каждым члеником ситовидной трубки располагается клетка-спутница. Их структурное и функциональное взаимодействие обеспечивает транспорт органических веществ. Ситовидные трубки с клетками-спутницами характерны для покрытосеменных, это более совершенный тип ткани, обслуживающей нисходящий ток. Длина ситовидных трубок 150...300 мкм (у картофеля 138 мкм), диаметр 20...30 мкм.
Эволюция трахеальных и ситовидных элементов обнаруживает заметный параллелизм: одноклеточные трахеиды и ситовидные клетки превращаются в многоклеточные сосуды и ситовидные трубки; перфорации сосудов и перфорированные ситовидные пластинки перемещаются на поперечные или слабоскошенные концы члеников сосудов и члеников ситовидных трубок.
Онтогенез ситовидных трубок сложен. Клетка меристемы делится продольно. Одна из клеток (большей величины) превращается в членик ситовидной трубки, другая — в клетку-спутницу. Между сестринскими клетками сохраняются многочисленные плазмодесмы. Клетка-спутница может дополнительно разделиться поперек, тогда один членик будет сопровождать две или три клетки. Клетка-членик трубки растягивается, ее стенка несколько утолщается, но остается неодревесневшей. На концах образуются ситовидные пластинки с многочисленными перфорациями, выстланными полисахаридом каллезой, через которые проходят цитоплазматические тяжи. На первых этапах протопласт занимает постенное положение, центральная вакуоль окружена тонопластом. В цитоплазме образуются тела флоэмного белка (Ф-белок), сливающиеся затем в тяжи, фибриллы которого проходят через перфорации из членика в членик. В процессе созревания тонопласт разрушается, вакуолярный сок смешивается с цитоплазмой, ядро исчезает, ЭР сокращается, рибосомы и диктиосомы не обнаруживаются. Однако клетка остается живой и активно проводит вещества.
Важная роль в этом процессе принадлежит клеткам-спутницам, имеющим крупные ядра с ядрышками, множество митохондрий и рибосом. Их митохондрии способны ветвиться, образуя сети. По структуре — это активно работающие клетки, они участвуют в проведении ассимилятов по ситовидным трубкам. Процесс идет с затратой энергии, которую, видимо, они и поставляют. В случае гибели клеток-спутниц погибает и членик ситовидной трубки. Длительность работы ситовидных трубок обычно не превышает одного-двух вегетационных периодов. По мере старения ситовидные пластинки покрываются сплошным слоем каллезы, ток веществ прерывается, омертвевшие трубки сминаются.
Механическая ткань – склеренхима. Во вторичном лубе называется (камбиформ). Лубяные волокна играют опорную роль.
Основная ткань – лубяная паренхима.
Живые тонкостенные клетки лубяной паренхимы участвуют в ближнем транспорте ассимилятов, в них откладываются запасные вещества.
Основные ткани.
По происхождению основные ткани почти всегда первичны, образуются из апикальных меристем.
Строение: состоят из живых паренхимных клеток, сильно варьирующих по форме, но в типичном случае паренхима основной ткани состоит из клеток, у которых длина немногим больше, чем ширина, чаще почти изодиаметрических. Клеточная оболочка первичная тонкостенная, с простыми порами. Основная паренхима сохраняет способность к делению, например при заживлении ран, образовании придаточных корней и побегов.
Функции основных тканей: синтез, накопление и использование органических веществ.
В зависимости от выполняемой функции различают основную (типичную), ассимиляционную, запасающую и воздухоносную основные ткани.
Основная паренхима располагается внутри тела растения достаточно крупными массивами. Типичная основная паренхима заполняет сердцевину стебля, внутренние слои коры стебля и корня. Ее клетки образуют вертикальные и горизонтальные тяжи (лучи), по которым осуществляется радиальный транспорт веществ. Из основной паренхимы могут возникать вторичные меристемы.
Ассимиляционная паренхима (хлоренхима). Главная ее функция — фотосинтез. Хлоренхима расположена в надземных органах, обычно под эпидермой. Особенно хорошо развита в листьях, меньше — в молодых стеблях. Характерно наличие межклетников, облегчающих газообмен. Клетки тонкостенные, в постенном слое цитоплазмы много хлоропластов. Общий объем их может достигать 70...80 % объема протопласта.
Запасающая паренхима: место отложения избыточных питательных веществ. Запасающие ткани состоят из живых тонкостенных клеток. Клетки паренхимных тканей могут содержать: амилопласты в крахмалоносных клетках (клубень картофеля), хромопласты (клетки цветков и плодов), твердый белок или жиры (в семенах), антоцианы или таннины в вакуолях, кристаллы. Клетки запасающей паренхимы могут иметь толстые клеточные стенки (накапливается гемицеллюлоза в семенах финиковой пальмы), или накапливают жиры.
В этих тканях накапливаются многие растительные продукты, используемые человеком. У культурных пищевых растений обычно гипертрофированно развитие запасающей паренхимы. Запасающие ткани широко распространены, развиваются в самых разных органах. Их можно обнаружить в клубнях картофеля, корнеплодах свеклы, моркови, луковицах лука, зерновках злаков, в семенах подсолнечника, клещевины, а также в стеблях сахарного тростника, корневищах, корнях.
У растений засушливых мест — суккулентов (агавы, алоэ, кактусы) — в клетках запасающей паренхимы накапливается вода, также как у растений засоленных местообитаний (солерос). Крупные водоносные клетки есть в стеблях злаков. В вакуолях водоносных клеток имеются слизистые вещества с высокой водоудерживающей способностью.
Воздухоносная паренхима (аэренхима). Выполняет вентиляционные, отчасти дыхательные функции, обеспечивая ткани кислородом. Состоит из клеток различной формы (например, звездчатых) и крупных межклетников. Хорошо развита в органах растений, погруженных в воду (в цветоножках кувшинки, в стеблях пушицы, белокрыльника, рдеста, в корнях камыша).
6. Механические ткани.
Механические (опорные) ткани обеспечивают прочность растения, способность противостоять действию тяжести собственных органов, порывам ветра, дождю, снегу, вытаптыванию животными. Механические ткани имеют сильно утолщенные клеточные стенки, которые даже после отмирания протопласта продолжают выполнять опорные функцию.
У проростков, в молодых участках органов механических тканей нет, необходимую упругость они имеют благодаря тургору. По мере развития органа в нем появляются специализированные механические ткани – колленхима и склеренхима.
Колленхима.
Характерна для двудольных растений, по происхождению первична. Колленхима состоит из толстостенных клеток. Клетки колленхимы вытянуты в длину, содержат протопласты со всеми органеллами, часто содержат хлоропласты, способны к возобновлению деления. Для колленхимы характерны первичные, утолщенные и неодревесневшие оболочки клеток.
Наиболее характерную особенность колленхимы составляет структура клеточных оболочек. На свежих срезах оболочки выглядят толстыми и блестящими, утолщения их часто распределены неравномерно. Они содержат целлюлозу, пектин и гемицеллюлозу, воду, но в них нет лигнина. В оболочках клеток колленхимы часто встречаются первичные поры.
В зависимости от распределения утолщений клеточной оболочки выделяют типы колленхимы:
Уголковой называется колленхима с утолщениями оболочки, находящимися в углах клеток.
Пластинчатой называется колленхима с утолщениями на тангенциальных стенках (параллельных поверхности), т.е. на двух ее противоположных стенках наружной и внутренней.
Рыхлой называется колленхима с утолщением оболочекна тех участках стенок которые примыкают к межклетникам.
С возрастом тип оболочки может меняться вследствие отложения в ней дополнительных слоев.
Колленхима располагается либо непосредственно под эпидермой, либо на расстоянии одного или нескольких слоев от нее, т.е. близко к переферии. В стеблях колленхима часто образует сплошной слой, расположенный по окружности вдоль оси стебля. Она встречается, иногда в форме тяжей, в выступающих ребрах многих травянистых стеблей. В черешках колленхима распределяется так же, как и в стеблях. В листовой пластинке она находится в тех жилках, в которых проходят более крупные проводящие пучки, причем иногда она располагается по обеим сторонам жилок, а иногда только с одной, обычно нижней, стороны. Корни редко содержат колленхиму.
Колленхима приспособлена, прежде всего, для выполнения функции опоры растущих листьев и стеблей. Функции опорной ткани колленхима может выполнять только в состоянии тургора. Ее оболочки начинают утолщаться на ранних этапах развития побега, однако образующееся утолщение пластично и способно к растяжению. Поэтому оно не препятствует удлинению стебля и листа.
Склеренхима.
Различают первичную и вторичную склеренхиму. Первичная склеренхима развита во всех вегетативных органах однодольных, реже двудольных растений; вторичная – у подавляющего большинства двудольных. Клетки склеренхимы имеют равномерно утолщенные, как правило, одревесневшие стенки. Их прочность близка к прочности стали. Полость клетки мала, поры простые щелевидные, немногочисленные. Протопласт отмирает рано и опорную функцию выполняют мертвые клетки. Различают два основных типа склеренхимы: волокна и склереиды.
Волокна – сильно вытянутые прозенхимные клетки длиной от нескольких десятых долей миллиметра до 1 (крапива) и даже 4 см (рами). Они обеспечивают прочность органов растений на растяжение, сжатие и изгибы. Прочность волокон повышается благодаря тому, что фибриллы целлюлозы проходят в них винтообразно, меняя направление во внешних и внутренних витках. Концы клеток чаще заостренные (лен), могут быть ветвистыми (конопля), тупыми (крапива) и др.
У многих растений первичные волокна значительно длиннее, чем вторичные. Так, у конопли первичные волокна достигают 12,7 мм, а вторичные – всего 2,2 мм. Для практического использования такие особенности имеют существенное значение. Склеренхимные волокна могут встречаться в растении в виде отдельных клеток (элементарное волокно) или, соединяясь с друг другом по длине, образуют пучок (техническое волокно). Волокна выделяют с помощью мочки стебля или механически. Лучшие результаты дает мочка, когда паренхимные ткани, окружающие пучки волокон, разрушаются в результате деятельности бактерий.
Волокна стеблей двудольных растений используют для изготовления различных тканей (особо ценится неодревесневающие волокна льна) реже веревок (пенька, получаемая из конопли).
Склереиды – клетки, чаще всего имеющие паренхимную форму. Они могут располагаться в растении плотными группами или в виде одиночных клеток. Окончательно сформировавшиеся склереиды – это мертвые клетки с толстыми одревесневшими стенками, пронизанными поровыми каналами, нередко ветвистыми. Поры простые. Склереиды имеют первичное происхождение. К ним относятся каменистые (брахисклереиды) и ветвистые (астеросклереиды) клетки.
Каменистые клетки – округлые, обычно встречаются группами. Из них состоят косточки вишни, сливы, персика и скорлупа ореха. Они встречаются в сочных плодах груши, айвы, рябины и в корнях некоторых растений. В некоторых сортах груш наблюдается раздревеснение каменистых клеток при созревании плода.
Ветвистые клетки имеют разнообразную форму, играют роль опорных в листьях чая, камелии, маслины, в стеблях водных растений.
7. Выделительные ткани.
В процессе жизнедеятельности в растениях образуется ряд веществ, не участвующих в дальнейшем метаболизме. Это побочные или конечные продукты обмена веществ (эфирные масла, смолы, бальзамы и каучук), подлежащие выделению или изоляции внутри растения. Удаление побочных продуктов обмена происходит в результате секреции — акта отделения вещества от протопласта. Секретируемые вещества называются секретами.
Клетки выделительных тканей паренхимные, тонкостенные. Их ультраструктура связана с секретирующим веществом. В тканях, где синтезируются эфирные масла, смолы, каучук, имеется хорошо развитый агранулярный ЭР, слизи — аппарат Гольджи.
Выделительные ткани классифицируют на наружные и внутренние в зависимости оттого, выделяют ли они секретируемые вещества наружу или изолируют внутри.
Наружные выделительные структуры.Связаны эволюционно с покровными тканями. Железистые волоски и желёзки представляют собой трихомы эпидермы. Они состоят из живых клеток, обычно имеют удлиненную ножку из одной или нескольких клеток и одно- или многоклеточную головку. Клетки головки выделяют секрет под кутикулу. При разрыве кутикулы вещество изливается наружу, после чего может образоваться новая кутикула и накопиться новая капля секрета. Железистые волоски цветков герани, листьев и цветков душистого табака и др. выделяют эфирные масла; сидячие головчатые волоски, образующие мучнистый налет на листьях мари и лебеды, — воду и соли. Желёзки отличаются от волосков короткой ножкой из несекретирующих клеток и многоклеточной головкой. Они характерны у мяты, лаванды, полыни, черной смородины.
Нектарники обычно образуются на частях цветка, но могут встречаться и на других надземных органах растения. Они могут быть представлены отдельными поверхностными железистыми клетками или находиться в ямках (лютик), желобках, шпорцах (живокость), возвышаться в виде бугорков, подушечек (тыква, ива, яснотка белая). Нектар представляет собой водный раствор Сахаров с небольшой примесью белков, спиртов и ароматических веществ. Он выделяется периодически небольшими порциями. Выделительные клетки нектарников отличаются густой цитоплазмой и высокой активностью обмена веществ. К нектарнику может подходить проводящий пучок. Нектароносные растения, усиленно посещаемые пчелами, называют медоносами. К таким растениям относятся липа, горчица, клевер, мелисса, гречиха и др.
Осмофоры представляют собой или специализированные клетки эпидермы, или особые желёзки, где секретируются ароматические вещества. Выделение летучего секрета происходит в течение короткого времени и связано с использованием запасных веществ. Аромат цветка создается секрецией сложной смеси органических соединений, главным образом эфирных масел.
Гидатоды выделяют капельно-жидкую воду и растворенные в ней соли. При избытке воды и ослаблении транспирации через гидатоды происходит гуттация — выделение капель воды из внутренних частей листа на его поверхность. Специальной секреторной ткани здесь, как правило, нет. Вода подается непосредственно трахеидами окончаний проводящих пучков. Гидатоды могут иметь вид многоклеточных волосков, устьиц, потерявших способность регулировать величину своей щели, и, наконец, представлять собой специальные образования из большого числа клеток, расположенных под водным устьицем. Гидатоды в виде многоклеточных волосков имеются у фасоли огненно-красной, а в виде водных устьиц встречаются у манжетки, настурции, камнеломки, земляники, шиповника, чая.
Переваривающие желёзки на листьях насекомоядных растений, например росянки, венериной мухоловки и др., выделяют жидкость, содержащую пищеварительные ферменты и кислоты.
Внутренние выделительные структуры.Вырабатывают и накапливают вещества, остающиеся внутри растения. Это могут быть отдельные секреторные клетки, рассеянные среди других тканей, как идиобласты. Они содержат различные вещества, особенно часто оксалат кальция в виде одиночных кристаллов, друз или рафид, бальзамы, танины, слизи и др.
Секреторные вместилища разнообразны по форме и происхождению. Схизогенные вместилищаобразуются вследствие расхождения клеток и формирования межклетника, выстланного живыми эпителиальными клетками и заполненного выделенными веществами. К ним относятся смоляные ходы хвойных растений. Лизигенные вместилища возникают в результате растворения группы клеток с продуктами секреции. Такие вместилища видны в кожуре плодов цитрусовых (апельсина, лимона, мандарина).
Млечники — особый тип выделительной ткани. Это живые клетки (нечленистые млечники) или ряды слившихся клеток (членистые млечники), пронизывающие все растение. В зрелом млечнике протопласт занимает постенное положение, полость млечника занята млечным соком — латексом, клеточные стенки неодре-весневающие, эластичные. Латекс представляет собой эмульсию белого, реже оранжевого или красного цвета. Жидкая основа латекса — клеточный сок, в котором растворены или взвешены углеводы (крахмальные зерна у молочайных, сахара у астровых), белки (у фикуса), жиры, танины, слизи, эфирные масла, каучук (более чем у 12 500 растений). Среди каучуконосов промышленное использование имеет тропическая гевея — Hevea (семейство Молочайные), в млечном соке которой содержится 40...50 % каучука.
Дата добавления: 2016-10-17; просмотров: 9612;