НЕЛІНІЙНІ ЕКОНОМЕТРИЧНІ МОДЕЛІ.
У реальних економічних умовах залежність між змінними може адекватно представлятися, як правило, у нелінійній формі. Ця залежність описується формулою
,
де
— нелінійна функція аргумента
,
— випадковий чинник.
Відповідна економетрична модель має вид:
.
Вид економетричної моделі вибирається на основі графічного зображення у системі координат (
,
) статистичної інформації (побудови діаграми розсіювання).
Розглянемо найважливіші нелінійні економетричні моделі.
Гіперболічна (зворотна) залежність має вид
.
Вона зводиться до лінійної заміною
. Одержимо
.
Перевірка моделі на адекватність та побудова прогнозу здійснюється, як і для лінійної моделі, з урахуванням розглянутої заміни змінної
.
Задача 5.1. Використати гіперболічну модель для дослідження залежності собівартості
(гр.од./шт.) від кількості виготовленої продукції
(шт.). Наведена статистична інформація для показників
і
:
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| ||||||||||
|
Потрібно знайти статистичні оцінки параметрів лінійного рівняння регресії.
¡ Статистичні оцінки
,
параметрів
та
гіперболічного рівняння регресії, із врахуванням заміни
, задовольняють системі нормальних рівнянь (2.12):

Для знаходження коефіцієнтів цієї системи складемо розрахункову табл. 5.1.
Таблиця 5.1
|
|
|
|
|
|
| 1 | |||||
| 2 | 0,5 | 0,25 | 18,5 | ||
| 3 | 0,33 | 0,11 | 11,33 | ||
| 4 | 0,25 | 0,06 | 5,25 | ||
| 5 | 0,2 | 0,04 | 5,8 | ||
| 6 | 0,17 | 0,03 | 4,5 | ||
| 7 | 0,14 | 0,02 | 3,57 | ||
| 8 | 0,13 | 0,02 | |||
| 9 | 0,11 | 0,01 | 2,56 | ||
| 10 | 0,1 | 0,01 | 2,2 | ||
| 2,93 | 1,55 | 96,71 |
Використовуючи нижній рядок табл. 5.1, отримаємо (обсяг вибірки
):
;
;
;
;

Розв’язок цієї системи рівнянь згідно із формулами (2.13):
,
.
Отже, емпіричне рівняння регресії має такий вигляд:
.
Для знаходження та оцінки значущості коефіцієнтів регресії
та
, точкової оцінки дисперсії збурень, вибіркового коефіцієнта детермінації, коефіцієнта кореляції та побудови для них довірчих інтервалів можна використати розглянуті в §2 методи дослідження лінійної моделі парної регресії. При цьому необхідно здійснити потрібну заміну переходу від нелінійної моделі до лінійної. ¥
Степенева (мультиплікативна) залежність має наступний вид
,
,
.
Її графік зображено на малюнку 5.1. Степенева залежність використовується для моделювання ситуацій, в яких ріст витрат
деякого ресурсу обумовлює необмежене збільшення випуску
.

Малюнок 5.1.
Вона зводиться до лінійної моделі логарифмуванням з довільною основою, наприклад,
. Тоді отримаємо співвідношення
.
Застосуємо такі заміни:
,
,
.
Отримаємо рівняння
.
Експоненціальна (показникова) модель записується так:
,
,
,
.
Для одержання лінійної залежності застосуємо логарифмування. Тоді
.
Здійснивши заміну змінних
,
,
, отримаємо
.
Криві з границею росту і точкою перегину часто використовуються для статистичного аналізу попиту на деякі нові товари. Такою кривою є, наприклад, крива Джонсона:
,
,
.
Її графік зображено на малюнку 5.2.

Малюнок 5.2.
Знайдемо логарифми обох частин кривої Джонсона:
.
Замінивши
,
, одержимо лінійну залежність
.
Для моделювання немонотонних (коливних) процесів набули широкого використання многочлени (поліноми)
.
Якщо всі статистичні значення
(
) різні, то, як відомо з теорії інтерполяції, через
точок можна єдиним способом привести многочлен степені
.
Для одержання лінійної моделі використаємо заміну
. Одержимо
.
Ця множинна лінійна залежність з числом змінних
,
.
При дослідженні залежності обсягу податкових надходжень
від величини податкової ставки
застосовують криву Лаффера
.
Тут
,
,
— невідомі коефіцієнти, які визначаються на основі статистичної інформації. Логарифмуємо обидві частини цієї залежності. Маємо
.
Використаємо заміни змінних
,
,
. Матимемо многочлен степені 2
.
Коефіцієнти
,
,
знаходимо як розв’язок такої системи лінійних рівнянь

де
,
— число статистичних значень кожної із змінних
,
.
Графік кривої Лаффера зображено на малюнку 5.3.

Малюнок 5.3.
Для опису процесів в демографії, маркетингу застосовують криву Гомперця
,
.
Логарифмуванням ця крива зводиться до модифікованої експоненціальної моделі
,
де
.
Графік цієї залежності наведено на малюнку 5.4.

Малюнок 5.4.
Зворотною до модифікованої експоненти є логістична крива
,
,
,
.
Її графік зображено на малюнку 5.5.

Малюнок 5.5.
Дата добавления: 2016-06-13; просмотров: 2263;
