Измерение температуры при помощи термометров сопротивления. Принцип действия уравновешенного и неуравновешенного моста.

Термометр сопротивления - это измерительный прибор, который изготавливается из металлической проволоки или пленки, намотанной на жесткий каркас, выполненный из кварца, фарфора или слюды, и заключенной в защитную оболочку (металлическую, кварцевую или стеклянную).
Используется такой термометр для измерения температуры в жидких и газообразных средах, в нагревательной технике, климатической и холодильной, а также в машиностроении, печестроении и т.п., поскольку имеет прямую зависимость электрического сопротивления от температуры.
Иными словами такие термометры еще называют терморезисторами, а также термисторами, так как основным чувствительным компонентом такого термометра является именно резистор, который изготовляется из различных материалов, что позволяет определить техпараметры термометра сопротивления, к примеру, область применения прибора или диапазон его рабочих температур.
Принцип действия такого агрегата заключается в изменении электрического сопротивления сплавов, чистых металлов (т.е. без примесей) и полупроводников с температурой.
Самыми распространенными термометрами сопротивления являются те, у которых установлены резисторы из платины. Это объясняется рядом преимуществ, которыми владеет этот материал. Во-первых, плюсом есть высокий температурный коэффициент сопротивления, что значительно облегчает работу с таким термометром. Во-вторых, преимуществом платинового резистора является высокая стойкость платины к окислению, что обеспечивает долгий срок службы прибора.
Платиновые терморезисторы отличаются минимальной погрешностью, именно поэтому такие агрегаты часто используют как инструмент для проверки. Эталонные термометры сопротивления изготавливаются из платины максимальной чистоты с коэффициентом температуры не менее 0,003925. Модельный ряд таких приборов достаточно широкий: существуют как модели различных размеров, так и модификации увеличенных температурных диапазонов. Кроме этого, для использования такого термистора на промышленных объектах, они производятся во взрывозащитном исполнении.
Термометры сопротивления, изготовлены на основе напыленной пленки на подложку отличаются особой повышенной вибропрочностью и меньшим диапазоном рабочих измеряемых температур. Так, максимальный диапазон воспринимаемых температур для пленочных чувствительных элементов платиновых термисторов составляет 600 °C, а проволочных - 660 °C.
Применение термометров сопротивления
Термометры сопротивления используются, как правило, для измерения температуры в среде в диапазоне от -263 °C до +1000 °C. Важно, чтобы конструкция такого термистора была чувствительной и стабильной, чего будет достаточно для проведения замеров необходимой точности в определенном диапазоне температур при определенных условиях использования термометра (к примеру, благоприятные условия или неблагоприятные, такие как вибрации, агрессивные среды и т.п.).
Как правило, терморезисторы работают вместе с логометрами, потенциометрами и измерительными мостами. От точности работы этих вспомогательных приборов зависит точность показаний термометра сопротивления. Существуют также и различные виды таких термометров: поверхностные, ввинчивающиеся, вставные, с присоединительными проводами и байонетными соединениями.

В схеме подключения простейшего термометра сопротивления используется два провода. Такая схема используется там, где не требуется высокой точности, так как сопротивление проводов включается в измеренное сопротивление и приводит к появлению дополнительной погрешности. Такая схема не применяется для термометров класса А и АА.

Уравновешенный термометр сопротивления

(уравновешенный резисторный термометр).

Принципиальная схема термометра представлена на рис.1, где Rt - терморезистор, R1, R3, - постоянные резисторы, R2 - регулируемый резистор, GВ - источник тока, R4 - потенциометр, PA - гальванометр.

В данном приборе применена классическая мостовая схема. Если с помощью регулируемых резисторов, входящих в плечи моста (в данном случае, R2) добиться равновесия моста, т.е. отсутствия тока в гальванометре, то сопротивление терморезистора при этом может быть найдено из соотношения:

 

Rt × R3 = R1 × R2 (5)

Температура t:

 

(6)

 

Таким образом, зная сопротивления трех плеч моста, сопротивление датчика при 0°C и коэффициент a, можно по уравнению (6) рассчитать температуру датчика.

Чаще всего сопротивления R1, R3 не меняют в процессе измерения, а равновесия моста добиваются изменением третьего регулируемого сопротивления R2. Приведенные выше формулы используют при расчете схем, а градуировку производят сравнением термометра сопротивления с образцовым. Для этого устанавливают соответствие температуры датчика и сопротивления R2 (например, строят градуировочный график, таблицу и т.п.).

Чувствительность измерительного прибора - это отношение изменения сигнала на выходе прибора к вызывающему его изменению измеряемой величины. В применении к данному случаю, чувствительность уравновешенного термометра сопротивления - это отношение изменения сопротивления R2 к соответствующему изменению температуры при условии равновесия моста. Это определение можно выразить формулой:

где Sутс – чувствительность уравновешенного термометра сопротивления.

 

 

Подставив в (7) выражение для R2 из уравнения (5) и выполнив дифференцирование, получим:

Таким образом, чувствительность уравновешенного термометра сопротивления с одним регулируемым плечом тем больше, чем больше сопротивление этого плеча и чем больше температурный коэффициент сопротивления датчика.








Дата добавления: 2016-06-13; просмотров: 5515;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.006 сек.