Глава 7. Организация персонального компьютера 5 страница

 

В настоящее время компьютеры могут иметь множество внешних интерфейсов. Наиболее распространены следующие:

системная шина (магистраль) ISA;

шина PCI;

шина AGP;

шина PC Cards (старое название PCMCIA) — обычно только в ноутбуках;

параллельный порт (принтерный, LPT-порт) Centronics;

последовательный порт (COM-порт) RS-232C;

последовательный порт USB (Universal Serial Bus);

последовательный инфракрасный порт IrDA.

 

Кроме того, компьютеры могут иметь разъемы для подключения внешнего монитора, клавиатуры, мыши. Некоторые компьютеры имеют встроенные модемы и сетевые адаптеры, тогда они располагают, соответственно, телефонным и сетевым внешними интерфейсами.

 

Подключение стандартных внешних устройств обычно не вызывает никаких проблем: надо только присоединить устройство к компьютеру соответствующим стандартным кабелем и (возможно) установить на компьютер программный драйвер. Знать особенности внешних интерфейсов пользователю в данном случае не обязательно. В случае инфракрасного порта не нужен даже кабель.

 

Гораздо сложнее ситуация, когда к компьютеру требуется присоединить нестандартное внешнее устройство. В этом случае необходимо доскональное знание особенностей используемых интерфейсов и умение эффективно с ними работать. Ограниченный объем книги не позволяет полностью рассмотреть данный вопрос, поэтому мы остановимся только на общем описании некоторых внешних интерфейсов компьютера.

 

Чаще всего для подключения нестандартных внешних устройств используются системная магистраль ISA, параллельный интерфейс Centronics (LPT) и последовательный интерфейс RS-232C (COM).

8.1. Системная магистраль ISA

 

Системная шина (магистраль) ISA была разработана специально для персональных компьютеров типа IBM PC AT и является фактическим стандартом. В то же время, отсутствие официального международного статуса магистрали ISA (она не утверждена в качестве стандарта ни одним международным комитетом по стандартизации) приводит к тому, что многие производители допускают некоторые отклонения от фирменного стандарта.

 

ISA явилась расширением магистрали компьютеров IBM PC и IBM PC XT. В ней было увеличено количество разрядов адреса и данных, увеличено число линий аппаратных прерываний и каналов ПДП, а также повышена тактовая частота. К 62-контактному разъему прежней магистрали был добавлен 36-контактный новый разъем. Тем не менее, совместимость была сохранена, и платы, предназначенные для IBM PC XT, годятся и для IBM PC AT. Характерное отличие ISA состоит в том, что ее тактовый сигнал не совпадает с тактовым сигналом процессора, как это было в IBM PC XT, поэтому скорость обмена по ней не пропорциональна тактовой частоте процессора.

 

Магистраль ISA относится к немультиплексированным (то есть имеющим раздельные шины адреса и данных) 16-разрядным системным магистралям среднего быстродействия. Обмен осуществляется 8-ми или 16-ти разрядными данными. На магистрали реализован раздельный доступ к памяти компьютера и к устройствам ввода/вывода (для этого имеются специальные сигналы). Максимальный объем адресуемой памяти составляет 16 Мбайт (24 адресные линии). Максимальное адресное пространство для устройств ввода/вывода — 64 Кбайт (16 адресных линий), хотя практически все выпускаемые платы расширения используют только 10 младших адресных линий (1 Кбайт). Магистраль поддерживает регенерацию динамической памяти, радиальные прерывания и прямой доступ к памяти. Допускается также захват магистрали.

 

 

Разъем магистрали ISA разделен на две части, что позволяет уменьшать размеры 8-разрядных плат расширения, а также использовать платы, разработанные для компьютеров IBM PC XT. Внешний вид плат расширения показан на рис. 8.1. Назначение контактов разъемов представлено в табл. 8.1 и 8.2. На магистрали присутствуют четыре напряжения питания: +5 В, –5 В, +12 В и –12 В, которые могут использоваться платами расширения.

 

Рис. 8.1. Нумерация контактов разъема ISA (для IBM PC XT — только А1 ... А31 и В1 ... В31).

 

В роли задатчика (Master) магистрали могут выступать процессор, контроллер ПДП, контроллер регенерации или другое устройство. Исполнителями (Slave) могут быть системные устройства компьютера, подключенные к ISA, или платы (карты) расширения.

 

Наиболее распространенное конструктивное исполнение магистрали — разъемы (слоты), все одноименные контакты которых параллельно соединены между собой, то есть все разъемы абсолютно равноправны. В слоты устанавливаются платы расширения, которые оснащены интерфейсными разъемами магистрали, выполненными печатными проводниками на краю платы. Количество установочных мест для плат расширения зависит от типа корпуса компьютера и составляет обычно от 2 до 8 и даже более.

 

В таблицах 8.1 и 8.2 знак минус перед названием сигнала говорит о том, что активному (рабочему) уровню сигнала соответствует низкий уровень напряжения на соответствующей линии магистрали. На линиях адреса и данных логическому нулю соответствует низкий уровень напряжения, а единице — высокий (то есть логика положительная).

Таблица 8.1. Назначение контактов разъема магистрали ISA (продолжение в Табл. 8.2).Контакт Цепь Контакт Цепь

A1 –I/O CH CK B1 GND

A2 SD7 B2 RESET DRV

A3 SD6 B3 +5 В

A4 SD5 B4 IRQ9 (IRQ2)

A5 SD4 B5 –5 В

A6 SD3 B6 DRQ2

A7 SD2 B7 –12 B

A8 SD1 B8 0WS

A9 SD0 B9 +12 B

A10 I/O CH RDY B10 GND

A11 AEN B11 –SMEMW

A12 SA19 B12 –SMEMR

A13 SA18 B13 –IOW

A14 SA17 B14 –IOR

A15 SA16 B15 –DACK3

A16 SA15 B16 DRQ3

A17 SA14 B17 –DACK1

A18 SA13 B18 DRQ1

A19 SA12 B19 –REFRESH

A20 SA11 B20 SYSCLK

A21 SA10 B21 IRQ7

A22 SA9 B22 IRQ6

A23 SA8 B23 IRQ5

A24 SA7 B24 IRQ4

A25 SA6 B25 IRQ3

A26 SA5 B26 –DACK2

A27 SA4 B27 T/C

A28 SA3 B28 BALE

A29 SA2 B29 +5 B

A30 SA1 B30 OSC

A31 SA0 B31 GND

 

Таблица 8.2. Назначение контактов разъема магистрали ISA (начало в Табл. 8.1).Контакт Цепь Контакт Цепь

C1 -SBHE D1 –MEM CS16

C2 LA23 D2 –I/O CS16

C3 LA22 D3 IRQ10

C4 LA21 D4 IRQ11

C5 LA20 D5 IRQ12

C6 LA19 D6 IRQ15

C7 LA18 D7 IRQ14

C8 LA17 D8 –DACK0

C9 –MEMR D9 DRQ0

C10 –MEMW D10 –DACK5

C11 SD8 D11 DRQ5

C12 SD9 D12 –DACK6

C13 SD10 D13 DRQ6

C14 SD11 D14 –DACK7

C15 SD12 D15 DRQ7

C16 SD13 D16 +5 B

C17 SD14 D17 –MASTER

C18 SD15 D18 GND

 

 

8.1.1. Назначение сигналов ISA

 

Вкратце о сигналах ISA уже говорилось в разделе 2.2. Рассмотрим назначение основных, наиболее часто используемых сигналов магистрали ISA подробнее.

SA0...SA19 — фиксируемые адресные разряды (они действительны в течение всего цикла обмена). 16-разрядным словам соответствуют четные адреса (SA0=0).

LA17...LA23 — нефиксируемые адресные разряды. Используются для адресации памяти. Действительны только в начале цикла обмена (в адресной фазе).

BALE — сигнал стробирования адресных разрядов (действительности адреса соответствует отрицательный фронт сигнала). Основное назначение — фиксация нефиксированных адресных разрядов в регистре-защелке.

-SBHE — сигнал типа цикла передачи данных (8-ми или 16-разрядный цикл). Активен при передаче старшего байта.

SD0...SD15 — разряды данных. По линиям SD0...SD7 передается младший байт, по линиям SD8...SD15 — старший байт.

-SMEMR, -MEMR — стробы чтения данных из памяти. Сигнал -SMEMR вырабатывается только при обращении к адресам, не превышающим FFFFF (находящимся в пределах младшего 1 Мбайта), а сигнал -MEMR — при обращении ко всем адресам памяти.

-SMEMW, -MEMW — стробы записи данных в память. Сигнал -SMEMW вырабатывается только при обращении к адресам, не превышающим FFFFF (находящимся в пределах младшего 1 Мбайта), сигнал -MEMW — при обращении ко всем адресам памяти.

-IOR — строб чтения данных из устройств ввода/вывода. При активном сигнале адресуемое устройство ввода/вывода должно выдать свои данные на шину данных.

-IOW — строб записи данных в устройства ввода/вывода. По этому сигналу адресуемое устройство ввода/вывода должно принять данные с шины данных.

-MEM CS16 — сигнал выставляется памятью для сообщения задатчику о том, что она имеет 16-разрядную организацию. Вырабатывается в ответ на распознавание адреса памяти.

-I/O CS16 — сигнал выставляется устройством ввода/вывода для сообщения задатчику о том, что оно имеет 16-разрядную организацию, и необходим 16-разрядный цикл обмена. Вырабатывается в ответ на распознавание своего адреса.

I/O CH RDY — сигнал снимается (делается низким) исполнителем (устройством ввода/вывода или памятью) по переднему фронту сигналов -IOR и -IOW в случае, если он не успевает выполнить нужную операцию в темпе задатчика. То есть этот сигнал используется для асинхронного обмена по магистрали.

-I/O CH CK — сигнал вырабатывается любым исполнителем (устройством ввода/вывода или памятью) для информирования задатчика о фатальной ошибке, например, об ошибке четности при доступе к памяти.

-0WS — сигнал выставляется исполнителем для информирования задатчика о необходимости проведения цикла обмена без вставки такта ожидания.

-REFRESH — сигнал регенерации, выставляется контроллером регенерации для информирования всех устройств на магистрали о выполнении циклов регенерации динамической памяти компьютера.

RESET DRV — сигнал сброса в начальное состояние всех устройств на магистрали. Вырабатывается центральным процессором при включении или сбое питания, а также при нажатии на кнопку сброса RESET компьютера.

SYSCLK — сигнал системного тактового генератора, тактовый сигнал магистрали. В большинстве компьютеров его частота равна 8 МГц независимо от тактовой частоты процессора.

OSC — не синхронизированный с SYSCLK сигнал кварцевого генератора с частотой 14,31818 МГц.

IRQ — сигналы запроса радиальных прерываний. Запросом является положительный переход на соответствующей линии IRQ.

DRQ — сигналы запроса ПДП.

-DACK — сигналы предоставления ПДП.

AEN — сигнал выбора устройства, запросившего ПДП. Отключает все остальные устройства, не участвующие в данном цикле ПДП.

8.1.2. Циклы обмена по ISA

 

О циклах обмена по магистрали ISA уже упоминалось в разделе 2.2. Здесь мы рассмотрим их несколько подробнее, на уровне, достаточном для практического использования.

 

В режиме программного обмена информацией на магистрали ISA выполняется четыре типа циклов:

цикл записи в память;

цикл чтения из памяти;

цикл записи в устройство ввода/вывода;

цикл чтения из устройства ввода/вывода.

 

Циклы обмена с памятью и с устройствами ввода/вывода различаются между собой используемыми стробами записи и чтения, а также временными задержками между сигналами.

 

Цикл обмена с устройствами ввода/вывода начинается с выставления задатчиком кода адреса на линиях SA0...SA15 и сигнала -SBHE, определяющего разрядность информации. Чаще всего используются только 10 младших линий SA0...SA9, так как большинство разработанных ранее плат расширения задействуют только их. В ответ на получение адреса исполнитель, распознавший свой адрес, должен сформировать сигнал -I/O CS16 в случае, если обмен должен быть 16-разрядным. Далее следует собственно команда чтения или записи.

 

При цикле чтения задатчик выставляет сигнал -IOR, в ответ на который исполнитель должен выдать данные на шину данных. Эти данные должны быть сняты исполнителем после окончания сигнала -IOR.

 

В цикле записи задатчик выставляет записываемые данные и сопровождает их стробом записи -IOW. Исполнитель должен принять эти данные (для гарантии — по заднему фронту сигнала -IOW).

 

На рис. 8.2 приведены временные диаграммы циклов обмена с устройствами ввода/вывода. Для простоты на одном рисунке показаны как цикл записи, так и цикл чтения, хотя производятся они, конечно, в разное время.

Рис. 8.2. Временные диаграммы циклов программного обмена с устройствами ввода/вывода (все интервалы в наносекундах).

 

Если исполнитель не успевает выполнить команду в темпе магистрали, он может приостановить на целое число периодов Т сигнала SYSCLK завершение цикла чтения или записи за счет снятия (перевода в низкий уровень) сигнала I/O CH RDY (так называемый удлиненный цикл). Это производится в ответ на получение переднего фронта сигнала -IOR или -IOW. Сигнал I/O CH RDY может удерживаться низким не более 15,6 мкс, в противном случае процессор переходит в режим обработки немаскируемого прерывания NMI.

 

Разработчику ISA-устройств необходимо, прежде всего, обращать внимание на те временные интервалы, которые связаны с быстродействием аппаратуры этих устройств. Например, на обработку адреса селектору адреса отводится не более 91 нс, а буфер данных в цикле чтения должен выдавать данные на магистраль не более чем за 110 нс.

 

При циклах программного обмена с памятью используются те же самые сигналы, только вместо строба чтения -IOR применяются стробы чтения -MEMR и -SMEMR, а вместо строба записи -IOW — стробы записи -MEMW и -SMEMW. Для определения байтового или словного формата данных применяется сигнал -MEM CS16. Для асинхронного режима обмена (удлиненного цикла) здесь также используется сигнал I/O CH RDY. Отметим, что память должна обрабатывать все адресные разряды магистрали, включая и LA17...LA23.

 

На рис. 8.3 показана временная диаграмма обмена с памятью, причем здесь указаны только временные интервалы, отличающиеся от аналогичных интервалов на рис. 8.2. Для простоты на одном рисунке показаны как цикл записи в память, так и цикл чтения из памяти.

Рис. 8.3. Временные диаграммы циклов программного обмена с памятью (все интервалы в наносекундах).

 

В случае циклов прямого доступа к памяти (ПДП) используется другой протокол обмена. Так как магистраль ISA имеет раздельные стробы чтения и записи для устройств ввода/вывода и для памяти, пересылка данных в режиме ПДП производится за один машинный цикл. То есть если данные надо переслать из устройства ввода/вывода в память, то одновременно производится чтение данных из устройства ввода/вывода (по сигналу -IOR) и их запись в память (по сигналу -MEMW). Аналогично осуществляется пересылка данных из памяти в устройство ввода/вывода (по сигналам -MEMR и -IOW).

 

Цикл ПДП (рис. 8.4) начинается с запроса ПДП от исполнителя, желающего произвести обмен, с помощью одного из сигналов DRQ. После освобождения магистрали текущим задатчиком (например, процессором) контроллер ПДП через время t формирует соответствующий сигнал -DACK, говорящий о предоставлении ПДП запросившему его.

Рис. 8.4. Временная диаграмма циклов прямого доступа к памяти (все интервалы в наносекундах).

 

Затем контроллер ПДП вырабатывает адрес ячейки памяти, с которой будет производиться обмен в текущем цикле, и сигнал AEN, который говорит устройству ввода/вывода о том, что к нему идет обращение в режиме ПДП. После этого выставляется строб чтения (-IOR или -MEMR), в ответ на который источник передаваемых данных выставляет свою информацию на шину данных, и строб записи (-MEMW или -IOW), по которому данные записываются в приемник данных. Здесь так же, как и в обычном цикле, возможен асинхронный обмен (удлиненный цикл) с использованием сигнала I/O CH RDY. Для простоты на одном рисунке показано два цикла: передачи из памяти в устройство ввода/вывода и передачи из устройства ввода/вывода в память. Временные интервалы этих двух циклов несколько различаются.

 

При аппаратных прерываниях протокол обмена совсем простой, так как прерывания используются радиальные. Исполнитель, желающий инициировать прерывание, выставляет свой запрос (положительный переход на одной из линий IRQ) на магистраль. Контроллер прерываний, получив этот запрос, преобразует его в запрос прерываний процессора. Процессор, закончив выполнение текущей команды, переходит на адрес начала программы обработки данного прерывания, который однозначно определяется по номеру используемого сигнала IRQ. После обработки прерывания процессор возвращается к основной программе.

 

Для проведения регенерации динамической памяти компьютера используются специальные циклы регенерации (рис. 8.5).

Рис. 8.5. Временные диаграммы циклов регенерации на ISA (все интервалы указаны в наносекундах).

 

Такие циклы выполняет контроллер регенерации, который должен для этого получать управление магистралью каждые 15 микросекунд. Во время цикла регенерации производится чтение одной из 256 ячеек памяти (для адресации при этом используются только восемь младших разрядов адреса SA0...SA7). Читаемая информация нигде не применяется, то есть это цикл псевдочтения. Проведение 256 циклов регенерации, то есть псевдочтение из 256 последовательных адресов памяти, обеспечивает полное обновление информации в памяти и ее непрерывное сохранение. Если по каким-то причинам цикл регенерации памяти не производится вовремя, возможна потеря информации.

 

Цикл регенерации включает в себя выставление сигнала -REFRESH, сигналов кода адреса SA0...SA7 и строба чтения из памяти -MEMR. В случае необходимости может использоваться сигнал I/O CH RDY, обеспечивающий асинхронный обмен.

 

При включении питания, а также при нажатии кнопки RESET на передней панели компьютера на магистрали вырабатывается сигнал RESET DRV, который используется всеми устройствами, подключенными к магистрали для сброса в исходное состояние и отключения от магистрали.

 

Захват магистрали сторонним задатчиком, в принципе, предусмотренная стандартом, используется на практике довольно редко, так как требует от устройства, захватившего магистраль, полного управления ею, включая и поддержку периодической регенерации памяти.

 

Электрические характеристики магистрали предъявляют жесткие требования ко всем подключаемым устройствам по величине входных и выходных токов, а также по потребляемой мощности. В противном случае возможен выход из строя всего компьютера в целом.

 

Стандарт определяет, что выходной ток любого источника магистральных сигналов не должен быть меньше 24 мА, а входной ток любого приемника магистральных сигналов не должен превышать 0,8 мА. Кроме того, нарушения в работе компьютера может вызвать несоблюдение временных ограничений, накладываемых используемыми протоколами обмена во всех рассмотренных циклах.

8.1.3. Распределение ресурсов компьютера

 

Помимо архитектуры аппаратных средств и параметров системной шины специфика любого компьютера определяется принятым стандартным распределением всех его ресурсов. Соблюдать правила, установленные этим распределением, должны и программисты (как системные, так и занимающиеся разработкой прикладных программ), и разработчики дополнительного оборудования, и даже те пользователи, которые просто хотят установить в компьютер новую плату расширения. В случае малейшего нарушения этих правил возможны как непредсказуемые сбои в работе компьютера, невозможность его начальной загрузки, так и полный выход компьютера из строя.

 

Под распределением ресурсов в данном случае понимается:

распределение адресного пространства системной памяти, отведение отдельных областей памяти под особые цели;

распределение адресного пространства устройств ввода/вывода, в том числе для системных средств компьютера;

распределение каналов запроса прерываний, в том числе для системных устройств;

распределение каналов запроса прямого доступа к памяти.

 

Понятно, что если программист захочет использовать те адреса памяти, которые отведены для системных нужд (например, для памяти дисплея или системных таблиц), то работоспособность компьютера нарушится. Если выполняемая программа попытается записать какую-либо информацию по тем адресам системной памяти, которые стандартом отведены под постоянную память (ROM), то записываемая информация будет просто потеряна, и программа работать не будет. Если писать информацию по тем адресам памяти, которые отведены под видеопамять, то будет искажаться изображение на экране видеомонитора.

 

Если вставляемая в компьютер плата расширения использует неправильные (занятые другими устройствами) адреса в адресном пространстве памяти, то ее работа будет невозможна, и не исключен даже выход из строя аппаратуры компьютера (так как при циклах чтения из перекрывающихся адресов памяти два устройства будут выставлять свои данные на шину одновременно, что может стать причиной выгорания буферных микросхем).

 

Если разработчик платы расширения с устройством ввода/вывода или пользователь, подключающий новую плату расширения, установят адрес своего устройства так, что он будет совпадать с адресом системного устройства или адресом другой платы расширения, то возможны конфликты при обращении к данному устройству. При этом в цикле записи информация будет записываться не в одно, а в два или более устройств, а в цикле чтения на шину данных будут одновременно выставлять свои данные не одно, а несколько устройств. То есть в цикле записи возможно нарушение установленных режимов работы системных устройств (например, контроллера прерываний или контроллера ПДП) или неправильная работа новой платы расширения, а в цикле чтения — даже выход из строя одного из устройств, выставляющих свои данные на магистраль одновременно.

 

Если при подключении к компьютеру новой платы расширения установить для нее неправильный канал запроса прерывания, это может привести к тому, что данное прерывание просто не будет обслуживаться. Может также перестать обслуживаться прерывание от системного устройства, с которым конфликтует новая плата. В худшем случае это может вызвать выход из строя новой платы расширения или же системного устройства.

 

Точно так же при неправильном выборе номера канала запроса прямого доступа к памяти может перестать обслуживаться запрос ПДП системного устройства, а может выйти из строя системное устройство или новая плата расширения. То есть соблюдение правил стандартного распределения ресурсов компьютера — это не чья-то прихоть, а жизненная необходимость.

 

Правда, в последнее время получила распространение снимающая данные проблемы технология автоматического распределения ресурсов Plug-and-Play (PnP, P&P), что можно перевести как «Вставляй и работай». При этом пользователю достаточно просто подключить свою плату к компьютеру, а все операции по распределению ресурсов компьютер выполнит самостоятельно, и любые конфликты будут автоматически устранены.

 

Но для этого необходимо обязательное выполнение двух условий. Во-первых, технологию PnP должен поддерживать данный компьютер и его программное обеспечение. Во-вторых, эту технологию должно поддерживать подключаемое к компьютеру устройство. Определить это довольно просто: если на плате имеются переставляемые перемычки или механические переключатели для задания параметров платы (адресов портов ввода/вывода, номера используемого прерывания, базового адреса памяти, номера канала ПДП), то можно смело утверждать, что выбор конфигурации, учет стандартного распределения ресурсов компьютера ложится на пользователя. Компьютер здесь не помощник. Конечно же, перед установкой в компьютер новых плат расширения следует внимательно прочитать инструкцию и точно следовать ей. Подробнее о работе режима PnP будет рассказано ниже.

 

А теперь рассмотрим принятое в персональных компьютерах стандартное распределение ресурсов.

 

О стандартном распределении памяти уже говорилось в предыдущей главе. Чуть подробнее распределение адресов памяти описано в табл. 8.3.

 

Из таблицы видно, что для памяти, входящей в состав устройств ввода/вывода, отводится зона всего лишь в 92 Кбайта (адреса С8000…DFFFF). В этом пространстве может располагаться как оперативная память, так и постоянная память устройств ввода/вывода. Иногда память устройств ввода/вывода захватывает также и зону адресов С0000…С7FFF.

Таблица 8.3. Распределение адресов памяти (адреса даны в шестнадцатеричном коде).Адреса памяти Назначение

000000...0003FF Таблица векторов прерываний

000000...09FFFF Память DOS и пользовательских программ

0А0000...0АFFFF Память дисплея EGA или VGA

0B0000...0B7FFF Память монохромного дисплея MDA

0B8000...0BFFFF Память дисплея CGA

0C0000...0C3FFF ПЗУ BIOS для EGA/VGA

0C8000...0DFFFF Память устройств ввода/вывода

0E0000...0EFFFF Резерв ПЗУ ВIOS на материнской плате

0F0000...0FFFFF ПЗУ BIOS на материнской плате

 

 

Важно помнить, что помимо этого распределения, общего для любых программных и аппаратных средств, существуют еще и распределения памяти, специфические для каждой операционной системы. Их также необходимо учитывать во избежание отказа при выполнении системных программ. Отметим, что в современных компьютерах, конечно же, не используются давно устаревшие дисплеи стандартов CGA или MDA. Однако в том случае, если требуется универсальность программного обеспечения, надо учитывать и то, что его могут попытаться запустить на компьютерах с подобными дисплеями.

 

Стандартное распределение адресов в адресном пространстве устройств ввода/вывода персонального компьютера приведено в табл. 8.4.

 

Как уже отмечалось, стандарт допускает адресацию 64К устройств ввода/вывода (то есть можно использовать 16 разрядов адреса). Однако подавляющее большинство плат расширения для упрощения аппаратуры использует только 10 младших разрядов, что соответствует всего 1К (или 1024) адресов (от 000 до 3FF в шестнадцатеричном коде). При этом 16-разрядные порты ввода/вывода имеют четные адреса, то есть их может быть всего 512.

Таблица 8.4. Распределение адресов устройств ввода/вывода.Адреса Назначение

000...01F Контроллер ПДП 1

020...03F Контроллер прерываний 1

040...05F Программируемый таймер

060...06F Контроллер клавиатуры

070...07F Часы реального времени

080...09F Регистр страницы ПДП

0A0...0BF Контроллер прерываний 2

0С0...0DF Контроллер ПДП 2

0F0...0FF Математический сопроцессор

170...177 Накопитель на жестком диске (второй)

1F0...1F7 Накопитель на жестком диске (первый)

200...207 Игровой порт (джойстик)

278...27F Параллельный порт LPT2

2С0...2DF Адаптер EGA 2

2F8...2FF Последовательный порт COM2

300...31F Прототипные платы

320...32F Накопитель на жестком диске XT

360...36F Резервные адреса

370...377 Накопитель на гибком диске (второй)

378...37F Параллельный порт LPT1

380...38F Контроллер бисинхронного обмена SDLC2

3A0...3AF Контроллер бисинхронного обмена SDLC1

3B0...3DF Адаптер VGA

3B0...3BF Адаптер дисплея MDA и принтера

3C0...3CF Адаптер EGA 1

3D0...3DF Адаптер СGA

3F0...3F7 Накопитель на гибком диске (первый)

3F8...3FF Последовательный порт COM1

 

 

Как видно из таблицы, значительная часть возможных адресов уже занята системными устройствами, свободных адресов не так много. Резервные адреса — это те, которые зарезервированы под дальнейшее расширение системы.

 

В табл. 8.5 представлено стандартное распределение номеров аппаратных прерываний и соответствующих им номеров в таблице векторов прерываний (INT).

 

Как видно из таблицы, большинство входов IRQ заняты системными ресурсами компьютера. Свободны (зарезервированы) только четыре канала: 10, 11, 12, 15, причем они находятся на 16-разрядной части разъема магистрали ISA. Правда, иногда в компьютерах применяется только один параллельный порт или (гораздо реже) только один последовательный порт, и тогда свободными оказываются еще IRQ3 и IRQ5. Сигналы IRQ0...IRQ2, IRQ8 и IRQ13 задействованы на системной плате и недоступны платам расширения.

Таблица 8.5. Распределение каналов аппаратных прерываний.Номер прерывания IRQ INT Назначение

0 08 Программируемый таймер

1 09 Контроллер клавиатуры

2 0A Каскадирование второго контроллера

8 70 Часы реального времени (только АТ)

9 71 Программно переадресовано на IRQ2

10 72 Резерв

11 73 Резерв

12 74 Резерв

13 75 Математический сопроцессор








Дата добавления: 2016-05-25; просмотров: 615;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.075 сек.