Сущность предварительного напряжения арматуры, способы и методы создания предварильного напряжения в железобетонных конструкциях.
Малая прочность бетона на растяжение, составляющая 1/10-1/15 его прочности на сжатие, является причиной образования трещин в бетоне растянутых зон элементов железобетонных конструкций при эксплуатационных нагрузках.
Значительное раскрытие трещин, нередко достигающее 0,2—0,3 мм и более, во многих случаях опасно с точки зрения коррозии арматуры. Придание арматуре периодического профиля несколько уменьшает раскрытие трещин, однако этого свойства железобетона полностью не устраняет.
С развитием техники широкое применение нашли бетоны повышенной прочности марок 400—600 и выше, а также высококачественные арматурные стали с временным сопротивлением до 20 тыс. кгс/см2 и более, что экономически оправдано, поскольку отношение стоимости к прочности высокопрочных материалов, применяемых для железобетона, значительно ниже, чем для материалов менее прочных.
Для повышения трещиностойкости железобетонных конструкций производится их предварительное напряжение (до приложения основных нагрузок), которое производят таким образом, чтобы образовывалось предварительное обжатие тех зон бетона, в которых при основных нагрузках ожидаются растягивающие напряжения.
Предварительно напряженный железобетон не является особым железобетоном; он образуется из тех же материалов, что и железобетон, не подвергаемый предварительному напряжению. Однако предварительное напряжение придает железобетону дополнительные качества, которые могут быть эффективно использованы.
Многочисленные экспериментальные исследования показали, что предварительное напряжение практически не влияет на величину разрушающей нагрузки, но существенно (в несколько раз) повышает трещиностойкость и жесткость железобетонных элементов.
Улучшая качество железобетона, предварительное напряжение позволяет широко использовать высокопрочные материалы, экономить сталь (в ряде случаев до 70%), способствовать снижению общего веса конструкций, получать конструкции, хорошо сопротивляющиеся многократно повторяющимся динамическим воздействиям.
Предварительное напряжение железобетонных элементов производят посредством натяжения арматуры и передачи ее реактивного давления на бетон с целью его обжатия.
Различают два метода натяжения арматуры:
1) «натяжение на упоры», т. е. натяжение арматуры на упоры стенда, опалубку или формы и отпуск ее после бетонирования по достижении бетоном достаточной прочности, вследствие чего арматура, стремясь укоротиться, обжимает бетон, а сама остается растянутой (рис. а);
2) «натяжение» на бетон, т.е. натяжение арматуры, размещенной в каналах или пазах элемента, при помощи приспособлений, опирающихся на готовый элемент по его концам (по достижении бетоном необходимой прочности). Арматуру при помощи анкеров фиксируют в натянутом положении, и она обжимает бетон, впоследствии каналы инъецируют цементным раствором под давлением, а пазы заполняют бетоном (рис. б).
Натяжение на упоры более целесообразно для заводских условий изготовления железобетонных конструкций и изделий. Натяжение на бетон более трудоемко, его практикуют в тех случаях, когда затруднено или не может быть осуществлено натяжение на упоры, например при строительстве уникальных конструкций больших размеров или изготовлении монолитных конструкций.
Для натяжения арматуры используют несколько способов: механический, электротермический, термический, физико-химический (самонапряжение), электромеханический.
Механический способ заключается в растяжении арматуры при помощи гидравлических или механических домкратов, рычагов, гаечных ключей, грузов и т. п.
К механическому относится предложенный проф. В. В. Михайловым способ непрерывной навивки арматуры. По этому способу натянутую проволоку навивают на упоры поворотного стола. В настоящее время разработаны навивочные машины, при помощи которых натянутую проволоку наматывают на упоры неподвижного стенда. Способ непрерывного армирования дает возможность создавать предварительно напряженные конструкции с одноосным и двухосным обжатием для зданий промышленного и гражданского строительства. Непрерывное армирование используют также при натяжении арматуры резервуаров, силосов и т. д.
Электротермическим способом изготовляют около 80% всех предварительно напряженных конструкций. Стержни арматуры нагревают до температуры 300-400°С при помощи электротока и в нагретом состоянии устанавливают в упоры. При остывании стержни, стремясь сократиться, натягиваются, что используется для обжатия бетона. Этот способ отличается простотой, малой трудоемкостью и сравнительно низкой стоимостью. Однако точность натяжения этим способом ниже, чем при других способах.
Электромеханический способ является комбинированным, он применяется при непрерывном армировании. Высокопрочную проволоку, нагретую электротоком до 300-400°С, навивают на упоры формы или стенда при помощи намоточной машины. При этом необходимая мощность механических приспособлений для намотки значительно снижается. После остывания проволока получает предварительное напряжение.
При термическом способе натяжения стержень до бетонирования покрывают составом, размягчающимся при нагревании. После укладки в форму, бетонирования и набора бетоном прочности арматуру нагревают до 90-110°С, в результате чего обмазка размягчается и арматура свободно удлиняется при дальнейшем нагревании. При температуре 300-350°С обмазка необратимо затвердевает и конструкция становится предварительно напряженной.
При физико-химическом способе используется свойство бетонов, изготовленных с применением расширяющихся цементов. При расширении бетона в процессе твердения арматура также удлиняется, отчего в ней создается предварительное напряжение. Принцип самонапряжения конструкций является весьма перспективным, так как дает возможность обойтись без сложных приспособлений для натяжения арматуры.
Вопрос 25
Расчет сжатых железобетонных элементов прямоугольного сечения.
Для прямоугольного сечения zб=hо-0,5х; Fб=bx. (14)
Приведем решение для наиболее часто встречающихся в практике условий применения сжатых элементов (изготовленных из бетона марки не выше 400 с арматурой классов А-I, А-II, А-III, имеющих площадку текучести).
Условие прочности принимает вид
Ne£Rпрbx(ho-0.5x)+RасF’в(ho-a’a) (15)
Положение нейтральной оси при x=x/ho>xR определяют из формулы (sa=Ra)
N+RaFa-RacF’a=Rпрbx (16) или
Rпрbx(e-ho+0.5x)±RacF’ae’-RaFae=0 (17) где знак минус принимают при e<ho-a’. Из уравнения (17)
Если х<2а', то прочность сечения проверяют при Rа.с=0, если это приводит к повышению прочности элемента в сравнении с расчетом по формуле (15).
Наименьшая суммарная площадь арматуры (Fа=F’a) получается в случае, когда положение нейтральной оси соответствует xR=xRho. При этом статический момент сжатой зоны бетона bxR(ho-0.5xR)=ARbh2o (19) где AR=xR(1-0.5xR) (20). Площадь сжатой арматуры в соответствии с формулой (15) (21)
Площадь сечения растянутой арматуры определяют из уравнения (16) при замене х на хR=xRho: (22)
Если формула (21) дает отрицательный результат, то сжатая арматура по расчету не требуется. Однако по конструктивным соображениям сжатую зону армируют минимальным количеством арматуры F’a.
При заданном сечении арматуры F’a на основании формулы (15) вычисляют
В правой части этого выражения все величины известны. Учитывая обозначения x=x/ho; Ао=x(1-0,5x)
Величина Ао может быть вычислена по формуле , а затем определено x=1-Ö1-2Ао
На конец из равенства (16), учитывая, что х=xho, может быть найдена площадь арматуры
(26)
В элементах, подверженных действию одинаковых или близких по величине, но противоположных по знаку изгибающих моментов (например, в стойках эстакад, средних подкрановых колоннах, арках и т. п.), рационально применять симметричное армирование, т.е. Fa =F’a. В этом случае при Rа=Rа.с согласно формуле (16) высота сжатой зоны бетона (27)
Учитывая, что при симметричном армировании е=еоh+0.5(hо-а), из формулы (15) находим
(28)
Симметричная арматура менее экономична, чем несимметричная; ее следует применять, если получается перерасход арматуры не более чем на 5% по сравнению с несимметричной арматурой.
При x=x/ho>xR высоту условной сжатой зоны определяют из формулы N-RacF’a+saFa=Rпрbx (29)
Сечение арматуры подбирают методом последовательного приближения в следующем порядке. Ориентировочно задаются коэффициентом армирования m элемента, определяют значение Nпр и затем вычисляют количество арматуры Fa и F’a. Если найденные площади сечения арматуры Fa и F’a соответствуют первоначально принятому коэффициенту армирования m, подбор арматуры считают выполненным. Если этого соответствия нет, производят повторные вычисления.
Суммарный процент армирования окончательно подобранного сечения арматуры
Расчет сжатых бетонных и железобетонных элементов прямоугольного сечения с симметричным армированием (рис.10) сталью классов А-I-А-III для случая, когда расчетный эксцентриситет продольной силы во равен нулю, при lo£20h допускается производить по условию N=mj(RпрF+RacFa)
где m - коэффициент, принимаемый равным: m=1 при h>20; m=0,9 при h£20 см; h - размер сечения в рассматриваемой плоскости; j - коэффициент, определяемый по формуле j=jб+2(jж-jб)а, принимаемый не более jж; jб и jж - коэффициенты, принимаемые по табл.; Fa - площадь сечения всей продольной арматуры;
Вопрос 26
Дата добавления: 2016-05-11; просмотров: 3935;