Расчет конструкций по предельным состояниям

Требования, предъявляемые к строительным конструкциям

 

К строительным конструкциям магистральных трубопроводов и нефтегазохранилищ относятся такие несущие конструкции, для которых размеры поперечных сечений определяются расчетом.

Строительные конструкции должны удовлетворять эксплуатационным, техническим, экономическим, производственным, эстетическим и другим требованиям.

Эксплуатационные и технические требования, предъявляемые к строительным конструкциям, означают, что они должны отвечать своему назначению, быть удобными в эксплуатации, иметь достаточную прочность, жесткость, устойчивость, выносливость, трещиностойкость и огнестойкость, обеспечивать долговечность сооружения.

Экономичность строительных конструкций зависит от расхода материалов и их стоимости, стоимости изготовления отдельных частей и деталей конструкций, транспортирования отправных элементов до строительных площадок, проведения монтажных работ. Кроме того, качественно выполненный проект строительных конструкций, как правило, снижает эксплуатационные расходы.

Обязательным правилом при проектировании строительных конструкций является применение типовых изделий массового производства, унифицированных типовых изделий, изготовленных на заводах с максимально механизированными и автоматизированными технологическими процессами. Это приводит к удешевлению, упрощению и значительному ускорению процесса монтажа и строительства.

На предприятиях, связанных с транспортом и хранением нефти и газа наиболее часто применяются металлические (стальные, алюминиевые) и железобетонные конструкции.

Проектирование строительных конструкций, которое включает расчет и конструирование, необходимо проводить в соответствии с требованиями строительных норм и правил (СНиП).

Согласно этим нормам при проектировании строительных конструкций в нашей стране применяется метод расчета конструкций по предельным состояниям.

 

Расчет конструкций по предельным состояниям

Под предельным состоянием конструкции понимают такое ее состояние, при котором она теряет способность сопротивляться внешним нагрузкам и воздействиям или перестает удовлетворять предъявляемым к ней эксплуатационным требованиям. Различают две группы предельных состояний.

Первая группа предельных состояний необходима для обеспечения требований несущей способности конструкций - прочности, устойчивости и выносливости.

Вторая группа предельных состояний накладывает ограничения по развитию чрезмерных эксплуатационных деформаций от статических и динамических нагрузок, при которых в конструкции, сохраняющей прочность и устойчивость, появляются необратимые деформации или такие амплитуды колебаний, при которых конструкция перестает удовлетворять предъявляемым к ней эксплуатационным требованиям.

Также ко второй группе предельных состояний относятся ограничения по образованию и развитию трещин. В этом случае в конструкции, сохраняющей прочность, появляются трещины таких размеров, при которых дальнейшая эксплуатация сооружений становится невозможной. Например, в результате чрезмерного раскрытия берегов трещины нарушается герметичность трубопроводов и резервуаров, появляются течи.

В соответствии с первым предельным состоянием несущая способность конструкции будет обеспечена при выполнении следующего условия

, (2.1)

где N – расчетное усилие, определяемое при наиболее тяжелой комбинации расчетных нагрузок и воздействий;

- наименьшая возможная несущая способность поперечных сечений элементов конструкций, подвергаемых нагружению.

Расчетное усилие вычисляется от суммы всех нагрузок

, (2.2)

где – нормативные усилия;

– коэффициент надежности по нагрузке, который учитывает возможность отклонения фактических нагрузок от их нормативных значений.

Расчетные усилия в курсе сопротивления материалов принято называть внутренними силовыми факторами или интегральными характеристиками напряжений. Они возникают в сечениях отдельных элементов строительных конструкций и зависят от характера и величины внешних нагрузок и воздействий. Если внешние силы сжимают или растягивают строительный элемент, то в его поперечных сечениях возникают продольные силы, если изгибают, то в поперечных сечениях необходимо искать изгибающий момент. Для определения нормативных усилий, как правило, используют метод сечений, подробно рассмотренный в курсе сопротивления материалов.

Несущая способность элементов строительных конструкций зависит от прочностных характеристик применяемых материалов и от выбранных размеров и формы поперечных сечений, т.е. от геометрических характеристик. В общем виде несущая способность конструкции может быть выражена в виде функции

, (2.3)

где – расчетное сопротивление материала;

– геометрические характеристики поперечных сечений (площадь при растяжении или сжатии, момент сопротивления при изгибе).

Студентам, изучившим курс сопротивления материалов, будет понятен такой пример оценки несущей способности элементов строительных конструкций

, (2.4)

где - максимальные нормальные напряжения в поперечном сечении стержня при растяжении сжатии или

- максимальные нормальные напряжения при изгибе стержня.

В этих выражениях продольная сила и изгибающий момент это внутренние силы, возникающие в поперечных сечениях стержней и зависящие от величины и характера приложения внешних нагрузок и воздействий. Они также являются интегральными характеристиками напряжений в поперечных сечениях стержней. Площадь поперечного сечения стержня и момент сопротивления это геометрические характеристики, которые зависят формы и размеров поперечного сечения стержня. Для простых сечений геометрические характеристики вычисляются по известным формулам, либо выбираются по таблицам для стандартных прокатных профилей.

При расчете строительных конструкций необходимо отличать нормативное сопротивление материалов и расчетное сопротивление материалов . Нормативное сопротивление материала отражает его механические свойства и, в первую очередь, зависит от технологии и качества производства материала. Строительные нормы устанавливают порядок назначения нормативного сопротивления на партию произведенного материала с учетом статистического характера его контроля и отбраковки. За нормативное сопротивление стали, например, принимаются предел текучести т или предел прочности , установленные соответствующими стандартами.

Расчетное сопротивление материала определяется делением нормативного сопротивления на коэффициенты надежности по назначению и по материалу и умножением на коэффициент условий работы , который учитывает условия работы материала, отдельных элементов, строительных конструкций и сооружений в целом

. (2.5)

Второе предельное состояние определяется величинами предельных деформаций, при превышении которых нормальная эксплуатация конструкции становится невозможной.

При расчете по второму предельному состоянию должно соблюдаться условие

, (2.6)

где – вычисленная деформация конструкции, вызванная нормативными нагрузками;

– допустимая предельная деформация (перемещение) конструкции.

Для изгибаемых балок или пластинок вычисляют прогибы и углы поворота поперечных сечений, для растянутых и сжатых элементов вычисляют продольные перемещения, для оснований сооружений вычисляют величину осадки.

Предельные деформации определяются в соответствии с нормативными документами и, например, для балок предельные прогибы устанавливает СНиП 2.01.07-85 «Нагрузки и воздействия», а для оснований сооружений СНиП 2.02.01-83 «Основания зданий и сооружений».

 








Дата добавления: 2016-04-22; просмотров: 7835;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.01 сек.