Расчет множественной регрессии
(3-4 стр теория)
Ввиду четкой интерпретации параметров наиболее широко используется линейная функция
.
В линейной множественной регрессии параметры при называются коэффициентами «чистой» регрессии. Они характеризуют среднее изменение результата с изменением соответствующего фактора на единицу при неизмененном значении других факторов, закрепленных на среднем уровне.
Рассмотрим линейную модель множественной регрессии с двумя переменными
. (2.1)
Система уравнений для нахождения коэффициентов множественной линейной регрессии имеет вид
Для двухфакторной модели данная система будет иметь вид:
Для характеристики полученного уравнения можно использовать средние коэффициенты эластичности по каждому фактору
, (2.11)
которые показывают на сколько процентов в среднем изменится результат, при изменении соответствующего фактора на 1%. Средние показатели эластичности можно сравнивать друг с другом и соответственно ранжировать факторы по силе их воздействия на результат.
Рассмотрим пример(для сокращения объема вычислений ограничимся только десятью наблюдениями). Пусть имеются следующие данные (условные) о сменной добыче угля на одного рабочего (т), мощности пласта (м) и уровне механизации работ (%), характеризующие процесс добычи угля в 10 шахтах.
Таблица 2.2
№ | ||||||||||
Предполагая, что между переменными , , существует линейная корреляционная зависимость, найдем уравнение регрессии по и .
Для удобства дальнейших вычислений составляем таблицу ( ) в excel:
Таблица 2.3
№ | |||||||||||
5,13 | 0,016 | ||||||||||
8,79 | 1,464 | ||||||||||
9,64 | 0,127 | ||||||||||
5,98 | 1,038 | ||||||||||
5,86 | 0,741 | ||||||||||
6,23 | 0,052 | ||||||||||
6,35 | 0,121 | ||||||||||
5,61 | 0,377 | ||||||||||
5,13 | 0,762 | ||||||||||
9,28 | 1,631 | ||||||||||
Сумма | 6,329 | ||||||||||
Среднее значение | 9,4 | 6,3 | 6,8 | 90,8 | 41,7 | 49,6 | 60,3 | 66,4 | 44,5 | – | – |
2,44 | 2,01 | 3,36 | – | – | – | – | – | – | – | – | |
1,56 | 1,42 | 1,83 | – | – | – | – | – | – | – | – |
Для нахождения параметров уравнения регрессии в данном случае необходимо решить следующую систему нормальных уравнений:
Решаем ее в excel применяя поиск решения. в результате находим
, , .
Т.е. получили следующее уравнение множественной регрессии:
.
Оно показывает, что при увеличении только мощности пласта (при неизменном ) на 1 м добыча угля на одного рабочего увеличится в среднем на 0,854 т, а при увеличении только уровня механизации работ (при неизменном ) на 1% – в среднем на 0,367 т.
Сравнивать влияние факторов на результат можно также при помощи средних коэффициентов эластичности (2.11):
.
Вычисляем:
, .
Т.е. увеличение только мощности пласта (от своего среднего значения) или только уровня механизации работ на 1% увеличивает в среднем сменную добычу угля на 1,18% или 0,34% соответственно. Таким образом, подтверждается большее влияние на результат фактора , чем фактора
Дата добавления: 2016-04-22; просмотров: 746;