Объяснение эффекта Холла с помощью электронной теории.

Объяснение эффекта Холла с помощью электронной теории

Общие сведения.

Эффектом Холла называется появление в провод­нике с током плотностью j, помещён­ном в магнитное поле Н, электрического поля Ех, перпендикулярного Н и j. При этом на­пряжённость электрического поля, называемого ещё полем Холла, равна:

Рис 1.1

Ex = RHj sin a, (1)

где a угол между векторами Н и J (a<180°). Когда H^j, то величина поля Холла Ех максимальна: Ex = RHj. Ве­личина R, называемая коэффициентом Холла, является основной характеристикой эффекта Холла.

Эффект открыт Эдвином Гербертом Холлом в 1879 в тонких пла­стинках золота. Для наблюдения Холла эффекта вдоль прямоугольных пластин из иссле­дуемых веществ, длина которых l значитель­но больше ширины b и толщины d, про­пускается ток:

I = jbd (см. рис.);

здесь маг­нитное поле перпендикулярно плоскос­ти пластинки. На середине боковых граней, перпендикулярно току, распо­ложены электроды, между которыми из­меряется ЭДС Холла Vx:

Vx = Ехb = RHj/d. (2)

Так как ЭДС Холла меняет знак на обратный при изменении направления магнитного поля на обратное, то Холла эффект относится к не­чётным гальваномагнитным явлениям.

 

Простейшая теория Холла эффекта объясняет появление ЭДС Холла взаимодействием носителей тока (электронов проводимости и дырок) с магнитным полем. Под дейст­вием электрического поля носители заряда приобретают направленное движе­ние (дрейф), средняя скорость которого (дрейфовая скорость) vдр¹0. Плотность тока в проводнике j = n*evдр, где n — концентрация чи­сла носителей, е — их заряд. При наложе­нии магнитного поля на носители действу­ет Лоренца сила: F = e[Hvдp], под действием которой частицы отклоняются в направлении, перпендикулярном vдр и Н. В результате в обеих гранях провод­ника конечных размеров происходит на­копление заряда и возникает электростатическое поле — поле Холла. В свою очередь поле Холла действует на заряды и урав­новешивает силу Лоренца. В условиях равновесия eEx = еНvдр, Ex =1/ne Hj, отсюда R = 1/ne (cмз/кулон). Знак R сов­падает со знаком носителей тока. Для металлов, у которых концентрация носи­телей (электронов проводимости) близка к плотности атомов (n»1022См-3), R~10-3(см3/кулон), у полупроводников кон­центрация носителей значительно меньше и R~105 (см3/кулон). Коэффициент Холла R мо­жет быть выражен через подвижность носителей заряда m = еt/m* и удельную электропроводность s = j/E = еnvлр/Е:

R=m/s (3)

Здесь m*— эффективная масса носи­телей, t — среднее время между двумя последовательными соударениями с рассеивающи­ми центрами.

Иногда при описании Холла эффекта вводят угол Холла j между током j и направлением суммарного поля Е: tgj= Ex/E=Wt, где W — циклотронная частота носи­телей заряда. В слабых полях (Wt<<1) угол Холла j»Wt, можно рассматривать как угол, на который отклоняется движу­щийся заряд за время t. Приведённая те­ория справедлива для изотропного про­водника (в частности, для поликристал­ла), у которого m* и t их— постоянные вели­чины. Коэффициент Холла (для изотроп­ных полупроводников) выражается через парциальные проводимости sэ и sд и концентрации электронов nэ и дырок nд:

(a) для слабых полей

(4)

(б) для сильных полей.

При nэ = nд, = n для всей области магнитных полей :

,

а знак R указывает на преобладающий тип про­водимости.

Для металлов величина R зависит от зонной структуры и формы Ферми поверхности. В случае замкнутых по­верхностей Ферми и в сильных магнит­ных полях (Wt»1) коэффициент Холла изо­тропен, а выражения для R совпадают с формулой 4,б. Для открытых поверхно­стей Ферми коэффициент R анизотропен. Одна­ко, если направление Н относительно кристаллографических осей выбрано так, что не возникает открытых сечений поверхности Ферми, то выражение для R аналогич­но 4,б.

Объяснение эффекта Холла с помощью электронной теории.

Если металлическую пластинку, вдоль которой течет постоянный электрический ток, поместить в перпендикулярное к ней магнитное поле, то между гранями, параллельными направлениям тока и поля возникает разность потенциалов U=j1-j2 (смотри рис 2.1). Она называется Холловской разностью потенциалов (в предыдущем пункте – ЭДС Холла) и определяется выражением:

uh =RbjB (2.1)

Здесь b — ширина пластинки, j — плотность тока, B — магнитная индукция поля, R — коэффициент пропорциональности, получивший название постоянной Холла. Эффект Холла очень просто объясняется электронной теорией, отсутствие магнитного поля ток в пластинке обусловливается электрическим полем Ео (смотри рис 2.2). Эквипотенциальные поверхности этого поля образуют систему перпендикулярных к вектору Ео скоростей. Две из них изображены на рисунке сплошными прямыми линиями. Потенциал во всех точках каждой поверхности, а следовательно, и в точках 1 и 2 одинаков. Носители тока — электроны — имеют отрицательный заряд, поэтому скорость их упорядоченного движения и направлена противоположно вектору плотности тока j.

При включении магнитного поля каждый носитель оказывается под действием магнитной силы F, направленной вдоль стороны b пластинки и равной по модулю

F=euB (2.2)

В результате у электронов появляется составляющая скорости, направленная к верхней (на рисунке) грани пластинки. У этой грани образуется избыток отрицательных, соответственно у нижней грани — избыток положительных зарядов. Следовательно, возникает дополнительное поперечное электрическое поле ЕB. Тогда напряженность этого поля достигает такого значения, что его действие на заряды будет уравновешивать силу (2.2), установится стационарное распределение зарядов в поперечном направлении. Соответствующее значение EB определяется условием: eEB=euB. Отсюда:

ЕB=uВ.

Поле ЕB складывается с полем Ео в результирующее поле E. Эквипотенциальные поверхности перпендикулярны к вектору напряженности поля. Следовательно, они повернутся и займут положение, изображенное на рис. 2.2 пунктиром. Точки 1 и 2, которые прежде лежали на одной и той же эквипотенциальной поверхности, теперь имеют разные потенциалы. Чтобы найти напряжение воз­никающее между этими точками, нужно умножить расстояние между ними b на напряженность ЕB:

UH=bEB=buB

Выразим u через j, n и e в соответствии с формулой j=neu. В результате получим:

UH=(1/ne)bjB (2.3)

Последнее выражение совпадает с (2.1), если положить

R=1/ne (2.4)

Из (2.4) следует, что, измерив постоянную Холла, можно найти концентрацию носителей тока в данном металле (т. е. число носи­телей в единице объема).

Важной характеристикой вещества является подвижность в нем носителей тока. Подвижностью носителей тока называется средняя скорость, приобретаемая носителями при напряженности электри­ческого поля, равной единице. Если в поле напряженности Е носи­тели приобретают скорость u то подвижность их u0 равна:

U0=u/E (2.5)

Подвижность можно связать с проводимостью s и концентрацией носителей n. Для этого разделим соотношение j=neu на напряжённость поля Е. Приняв во внимание, что отношение j к Е дает s, а отношение u к Е - подвижность, получим:

s=neu0 (2.6)

Измерив постоянную Холла R и проводимость s, можно по формулам (2.4) и (2.6) найти концентрацию и подвижность носи­ли тока в соответствующем образце.

       
     
   
j

 

     


– – – – – – – – – – 1– – – – – – – – – – –

 

Рис 2.1

 
 


       
     
   
E0

 

       
   
u

 

 
       

 

 
 

 


           
     
       
         
           
 
+++++++++++++2+++++++++++++

 


Рис 2.2








Дата добавления: 2016-04-14; просмотров: 2691;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2025 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.01 сек.