Индуктивные умозаключения
Индуктивным называется умозаключение, в котором совершается переход от знания об отдельных предметах класса или о некоторых его частях к знанию обо всем классе в целом. Этот переход осуществляется путем экстраполяции содержащегося в посылках знания на более широкую область, и поэтому в заключении появляется информация, которой не было в посылках, и оно имеет не достоверный, а вероятный характер.
Различают два вида индуктивных умозаключений – полную и неполную индукции.
Умозаключением по полной индукции называется такое индуктивное умозаключение, в посылках которого перечислены все предметы класса, о которых делается обобщающее заключение. Например: «Вокруг остроугольного треугольника можно описать окружность, вокруг прямоугольного треугольника можно описать окружность и вокруг тупоугольного треугольника можно описать окружность. Никаких других треугольников не бывает. Значит вокруг любого треугольника можно описать окружность».
Смысл умозаключения по полной индукции состоит в том, что свойство, которое может быть обнаружено лишь у отдельных предметов или у отдельных разновидностей предметов данного класса, приписывается в заключении всему классу, выступая как его видовое свойство. Тем самым формируется более полное, более точное знание об этих объектах. Полная индукция, как и дедукция, дает новое осмысление содержащегося в посылках знания без добавления информации. Поэтому ее выводы достоверны. К этому виду индукции относится и математическая индукция, используемая в математике.
Умозаключение по неполной индукции представляет собой индуктивное умозаключение, в посылках которого дается знание о некоторых предметах класса, а в заключении это знание обобщается на весь класс. Например: «Грипп, корь, брюшной тиф, туберкулез имеют инкубационный период. Все эти заболевания – инфекционные. Значит все инфекционные заболевания имеют инкубационный период». Умозаключения по неполной индукции отличаются от умозаключений по полной тем, что в посылках перечислено знание не обо всех элементах рассматриваемого множества объектов (n), а лишь о некоторых (m), что и фиксируется отдельной посылкой (причем n>m). Заключение этого вида умозаключения не следует логически из посылок, а только подтверждается ими в большей или меньшей степени. Большая или меньшая степень вероятности заключения отражает эту степень подтверждения. Поэтому в индуктивной логике разрабатываются специальные методы оценки вероятности заключений индукции.
Схемы умозаключений:
Дата добавления: 2016-04-14; просмотров: 619;