Задачи анализа сетей Петри

Безопасность

Одно из важнейших свойств сети Петри, которая должна моделировать реальное устройство, – безопасность. Позиция сети Петри является безопасной, если число фишек в ней никогда не превышает 1. Сеть Петри безопасна, если безопасны все позиции сети.

Если позиция не является кратной входной или кратной выходной для перехода, ее можно сделать безопасной. К позиции pi, которую необходимо сделать безопасной, добавляется новая позиция p'i. Переходы, в которых pi используется в качестве входной или выходной, модифицируются следующим образом:

Если pi I(tj) и pi О(tj), тогда добавить p'i к О(tj).

Если pi О(tj) и pi I(tj), тогда добавить p'i к I(tj).

Простая сеть Петри на рис. 4.1 преобразована в безопасную на рис. 4.2.

Рис. 3.1. Небезопасная сеть Петри. Рис. 3.2 Безопасная сеть Петри

Ограниченность

Безопасность – это частный случай более общего свойства ограниченности. Позиция является k-безопасной или k-ограниченной, если количество фишек в ней не может превышать целое число k.

1-безопасная позиция называется просто безопасной. Заметим, что граница k' по числу фишек, которые могут находиться в позиции, может быть функцией от позиции (например, позиция p1 может быть 3-безопасной, тогда как позиция р2 – 8-безопасной). Однако, если позиция pi k -безопасна, то она также и k'-безопасна для всех k' ≥ k. Поскольку число позиций конечно, можно выбрать k, равное максимуму из границ каждой позиции, и определить сеть Петри k-безопасной, если каждая позиция сети k-безопасна.

Иногда нас будет интересовать только то, является число фишек в позиции ограниченным или нет, а не конкретное значение границы. Позиция называется ограниченной, если она k-безопасна для некоторого k; сеть Петри ограниченна, если все ее позиции ограниченны.

Сохранение

Определение 4.3. Сеть Петри С = (Р, Т, I, О) с начальной маркировкой μ называется строго сохраняющей, если для всех μ' R(C, μ )

.

Строгое сохранение – это очень сильное ограничение. Например, из него немедленно следует, что число входов в каждый переход должно равняться числу выходов, |I(tj)| = |О(tj)| . Если бы это было не так, запуск перехода изменил бы число фишек в сети.

Однако для более общего представления о свойстве сохранения рассмотрим рис. 4.3. Изображенная на нем сеть Петри не является строго сохраняющей, поскольку запуск перехода t1 или t2 уменьшит число фишек на 1, а запуск перехода t3 или t4 добавит фишку к маркировке. Мы можем тем не менее преобразовать эту сеть Петри в сеть на рис. 4.4, являющуюся строго сохраняющей.

Рис. 3.3. Не строго сохраняющая сеть Петри Рис. 3.4. Строго сохраняющая сеть Петри

В общем можно определить взвешивание фишек. Взвешенная сумма для всех достижимых маркировок должна быть постоянной. Фишкам, не являющимся важными, можно присвоить вес 0; другим фишкам можно присвоить веса 1, 2, 3 или любое другое целое.

Фишка определяется ее позицией в сети, все фишки в позиции неразличимы. Следовательно, веса связываются с каждой позицией сети. Вектор взвешивания w = (w 1, w 2, ..., w n) определяет вес w i для каждой позиции pi P.

Сеть Петри С = (Р, Т, I, О) с начальной маркировкой μ называется сохраняющей по отношению к вектору взвешивания w, w = (w 1, w 2, ..., w n), n = |Р|, w i ≥ 0, если для всех μ' R(C, μ )

.

Строго сохраняющая сеть Петри является сохраняющей по отношению к вектору взвешивания (1, 1, ..., 1). Все сети Петри являются сохраняющими по отношению к вектору взвешивания (0, 0, ..., 0). Поэтому сеть Петри будем называть сохраняющей, если она сохраняющая по отношению к некоторому положительному ненулевому вектору взвешивания w > 0 (с положительными ненулевыми весами, wi > 0). Так сеть Петри с рис. 4.3 является поэтому сохраняющей, поскольку она сохраняющая по отношению к (1, 1, 2, 2, 1). Сеть Петри с рис. 3.4 не является сохраняющей.

Активность

Тупик в сети Петри – это переход (или множество переходов), которые не могут быть запущены. Переход называется активным, если он не заблокирован (нетупиковый). Это не означает, что переход разрешен, скорее он может быть разрешенным. Переход tj сети Петри С называется потенциально запустимым в маркировке μ, если существует маркировка μ' R(C, μ), в которой tj разрешен. Переход активен в маркировке μ, если потенциально запустим во всякой маркировке из R(C, μ). Следовательно, если переход активен, то всегда возможно перевести сети Петри из ее текущей маркировки в маркировку, в которой запуск перехода станет разрешенным.

Существуют другие, связанные с активностью понятия, которые рассматривались при изучении тупиков. Их можно разбить на категории по уровню активности и определить для сети Петри С с маркировкой μ следующим образом:

Уровень 0: Переход tj обладает активностью уровня 0, если он никогда не может быть запущен.

Уровень 1: Переход tj обладает активностью уровня 1, если он потенциально запустим, т.е. если существует такая tj μ' R(C, μ), что tj разрешен в μ'.

Уровень 2: Переход tj обладает активностью уровня 2, если для всякого целого n существует последовательность запусков, в которой tj присутствует по крайней мере n раз.

Уровень 3: Переход tj обладает активностью уровня 3, если существует бесконечная последовательность запусков, в которой tj присутствует неограниченно часто.

Уровень 4: Переход tj обладает активностью уровня 4, если для всякой μ' R(C, μ) существует такая последовательность запусков σ, что tj разрешен в δ(μ', σ).

Переход, обладающий активностью уровня 0, называется пассивным. Переход, обладающий активностью уровня 4, называется активным. Сеть Петри обладает активностью уровня i, если каждый ее переход обладает активностью уровня i.

В качестве примера, иллюстрирующего уровни активности, рассмотрим сеть Петри на рис. 3.5.

Переход t0 не может быть запущен никогда; он пассивен. Переход t1 можно запустить точно один раз; он обладает активностью уровня 1. Переход t2 может быть запущен произвольное число раз, но это число зависит от числа запусков перехода t3. Если мы хотим запустить t2 пять раз, мы запускаем пять раз t3, затем t1 и после этого пять раз t2. Однако, как только запустится t1 (t1 должен быть запущен до того, как будет как будет запущен t2), число возможных запусков t2 станет фиксированным. Следовательно, t2 обладает активностью уровня 2, но не уровня 3. С другой стороны, переход t3 можно запускать бесконечное число раз, и поэтому он обладает активностью уровня 3, но не уровня 4, поскольку, как только запустится t1, t3 больше запустить будет нельзя.








Дата добавления: 2016-04-11; просмотров: 2035;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.008 сек.