Поверхностное упрочнение стали

Поверхностная закалка состоит в нагреве поверхностного слоя стальных деталей до аустенитного состояния и быстрого охлаждения с целью получения высокой твёрдости и прочности в поверхностном слое в сочетании с вязкой сердцевиной. Существуют различные способы нагрева поверхности под закалку –– в расплавленных металлах или солях, пламенем газовой горелки, лазерным излучением, током высокой частоты. Последний способ получил наибольшее распространение в промышленности.

При нагреве токами высокой частоты закаливаемую деталь помещают внутри индуктора, представляющего собой медные трубки с циркулирующей внутри для охлаждения водой. Форма индуктора соответствует внешней форме детали. Через индуктор пропускают электрический ток (частотой 500 Гц–10 МГц). При этом возникает электромагнитное поле, которое индуцирует вихревые токи, нагревающие поверхность детали. Глубина нагретого слоя уменьшается с увеличением частоты тока и увеличивается с возрастанием продолжительности нагрева. Регулируя частоту и продолжительность, можно получить необходимую глубину закаленного слоя, в пределах 1-10 мм. Преимуществами закалки токами высокой частоты являются регулируемая глубина закаленного слоя, высокая производительность (нагрев одной детали длится 10 с), возможность автоматизации, отсутствие окалинообразования. Недостаток – высокая стоимость индуктора, который является индивидуальным для каждой детали. Поэтому этот вид закалки применим, в основном, к крупносерийному производству.

Перспективный метод поверхностной закалки стальных деталей сложной формы –– лазерная обработка. Благодаря высокой плотности энергии в луче лазера возможен быстрый нагрев очень тонкого слоя металла. Последующий быстрый отвод тепла в объём металл приводит к закалке поверхностного слоя с приданием ему высокой твёрдости и износостойкости.

Химико-термическая обработка (ХТО)

ХТО–– процесс изменения химического состава, структуры и свойств поверхности стальных деталей за счёт насыщения её различными химическими элементами. При этом достигается значительное повышение твёрдости и износостойкости поверхности деталей при сохранении вязкой сердцевины. К видам химико-термической обработки относятся цементация, азотирование, цианирование , нитроцементация…

Цементация –– процесс насыщения поверхностного слоя стальных деталей углеродом. Цементация производится путём нагрева стальных деталей при 880–950 С в углеродосодержащей среде, называемой карбюризатором. Различают два основных вида цементации –– газовую и твёрдую. Газовая цементация проводится в газе, содержащем метан СH и оксид углерода CO. Твёрдая цементация проводится в стальных ящиках, куда укладываются детали вперемешку с карбюризатором. Карбюризатором служит порошок древесного угля с добавкой солей Na CO или Ba CO .

Цементации подвергают стали с низким содержанием углерода (0,1–0,3%). В результате на поверхности концентрация углерода возрастает до 1,0–1,2%. Толщина цементованного слоя составляет 1–2,5 мм. Цементацией достигается только выгодное распределение углерода по сечению детали. Высокая твёрдость и износостойкость поверхности получается после закалки, которая обязательно проводится после цементации. Затем следует низкий отпуск. После этого твёрдость поверхности составляет HRC 60. Цементации подвергают зубчатые колеса, втулки, оси, ролики

Азотированием называется процесс насыщения поверхности стали азотом. При этом повышается не только твёрдость и износостойкость, но и коррозионная стойкость. Проводится азотирование при температуре 500–600 С в среде аммиака NH в течение длительного времени (до 60 часов). Аммиак при высокой температуре разлагается с образованием активного атомарного азота, который и взаимодействует с металлом. Твёрдость стали повышается за счёт образования нитридов легирующих элементов. Поэтому азотированию подвергают только легированные стали. Наиболее сильно повышают твёрдость такие легирующие элементы, как хром, молибден, алюминий, ванадий. Глубина азотированного слоя составляет 0,3–0,6 мм., твёрдость поверхностного слоя по Виккерсу доходит до HV 1200 (при цементации HV 900).

К преимуществам азотирования перед цементацией следует отнести отсутствие необходимости в дополнительной термообработке, более высокую твёрдость и износостойкость, высокую коррозионную стойкость поверхности. Недостатками являются низкая скорость процесса Азотируют детали автомобилестроения, пресс-формы

Цианирование–– процесс одновременного насыщения поверхности стали углеродом и азотом.Проводится цианирование в расплавах цианистых солей NaCN или KCl. Различают низкотемпературное и высокотемпературное цианирование.

Низкотемпературное цианирование проводится при температуре 500–600 С, время процесса 1 – 1,5ч. При этом преобладает насыщение азотом. Глубина цианированного слоя составляет до 2 мм, твёрдость поверхности –– HV 1000. Низкотемпературное цианирование применяют для инструмента из быстрорежущей стали. После цианирования необходима термообработка : закалка + низкий отпуск.

Преимущества процесса : малая продолжительность, отсутствие коробления , высокая твердость поверхности. Недостаток - высокая токсичность цианистых солей

Нитроцементация - то же, что и цианирование (углеродом и азотом одновременно), но насыщение идет из газообразной фазы. Температура процесса ниже, чем при цементации, а твердость и износостойкость выше.

Все рассмотренные процессы – это насыщение поверхности неметаллами. Наряду с эти проводят насыщение металлами – металлизация

Металлизация

Алитирование – насыщение поверхностного слоя алюминием - для повышения жаростойкости.

Хромирование- насыщение хромом. Цель – получение высокой твердости, жаростойкости, коррозионной стойкости поверхности.

Борирование – насыщение бором. Борированные слои имеют очень высокую твердость (НV 2000), но очень хрупки.

Металлизация - процесс очень дорогостоящий, осуществляется при очень высоких температурах(1000-1200о С), в течение длительного времени (растворы замещения, а не внедрения, как при цементации)

Поверхностное упрочнение пластическим деформированиемосновано на способности стали к наклёпу при пластической деформации. Наиболее распространёнными способами такого упрочнения поверхности является дробеструйная обработка и обработка поверхности роликами или шариками.

При дробеструйной обработке на поверхность детали из специальных дробемётов направляется поток стальной или чугунной дроби малого диаметра (0,5–1,5 мм). Удары концентрируются на весьма малых поверхностях, поэтому возникают очень большие местные давления. В результате повышается твёрдость и износостойкость обработанной поверхности. Кроме того, сглаживаются мелкие поверхностные дефекты. Глубина упрочненного слоя при дробеструйной обработке составляет около 0,7 мм.

Обкатка роликами производится с помощью специальных приспособлений на токарных станках. Помимо упрочнения, обкатка снижает шероховатость обрабатываемой поверхности. Глубина упрочнённого слоя доходит до 15 мм.

МАШИНОСТРОИТЕЛЬНЫЕ МАТЕРИАЛЫ

ЛЕГИРОВАННЫЕ СТАЛИ

Легированные имеют ряд преимуществ перед углеродистыми. Они имеют более высокие механические свойства, прежде всего, прочность. Легированные стали обеспечивают большую прокаливаемость, а также возможность получения структуры мартенсита при закалке в масле, что уменьшает опасность появления трещин и коробления деталей. С помощью легирования можно придать стали различные специальные свойства (коррозионную стойкость, жаростойкость, жаропрочность, износостойкость, магнитные и электрические свойства). Классификация:

1. По содержанию легирующих элементов – низколегированные (общее содержание л.э. до

2,5 %.), среднелегированные (2,5-10%), высоколегированные (свыше 10 %).

2. По назначению : конструкционные, инструментальные, стали и сплавы с особыми свойствами(нержавеющие, жаростойкие, жаропрочные…)

3. По качеству: качественные, высококачественные, особовысококачественные. Отметим , что стали, обыкновенного качества могут быть только углеродистыми, т.е. легированные стали, как минимум, являются качественными.

Легирующие элементы по-разному влияют на свойства сталей:

- хром и кремний - ↑ твердость, прочность, жаростойкость, коррозионную стойкость ( при содержании в стали хрома более 12 %, сталь становится нержавеющей).

- никель и марганец - ↑ прочность, не снижая пластичности.

- вольфрам и молибден - ↓ величину зерна, улучшают режущие свойства стали.

Легирующие элементы влияют на положение точек диаграммы железо –цементит.

- различают л.э – никель, марганец, медь , расширяющие γ – область, т.е устойчивость аустенита увеличивается и стали вплоть до комнатной температуры могут иметь структуру аустенита- такие стали называют сталями аустенитного класса.








Дата добавления: 2016-02-16; просмотров: 1330;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.01 сек.