Основные виды систем отопления 1 страница

В настоящее время в стране применяют главным обра­зом центральные системы водяного и парового отопления, местные и центральные системы воздушного отопления, а также печное отопление. Приведем общую характеристику этих систем (кроме печного отопления) с детальной классифи­кацией на основании рассмотренных свойств теплоносите­лей.

1. При водяном отоплении циркулирующая нагретая вода охлаждается в отопительных приборах и возвращается в тепловой центр для последующего нагре­вания.

Системы водяного отопления по способу создания циркуляции воды разделяются на системы с естественной циркуляцией (гравитационные) и с механи­ческим побуждением циркуляции воды при помощи насосов (насосные). В гравитационнойсистеме используется свойство воды изменять свою плотность при различной температуре. В замкнутой вертикальной системе с неравномерным распределением плотности под действием гравитационного поля Земли возникает естественное движение воды.

В насоснойсистеме используется насос с механическим приводом для повышения разности давления, вызывающей циркуляцию, и в системе создается вынужден­ное движение воды.

По температуре теплоносителя раз­личаются системы низкотемпературные с предельной тем­пературой горячей воды tг<70 °С, среднетемпературные при tгот 70 до 100 °С и высокотемпературные при >!00°С. Максимальное значение температуры воды огра­ничено в настоящее время 150 °С.

По положению труб, объединяющих отопительные при­боры по вертикали или горизонтали, системы делятся на вертикальные и горизонтальные.

В зависимости от схемы соединения труб с отопитель­ными приборамибывают системы однотрубные и двухтрубные. В каждом стояке или ветви однотрубной системы приборы соединяются одной трубой, и вода протекает последовательно через все приборы. Если каждый отопи­тельный прибор, установленный в помещении, разделен на две равные части («а» и «б»), в которых вода движется в противоположных направлениях и теплоноситель последо­вательно проходит сначала через все части «а», а затем через все части «б», то такая однотрубная система носит название бифилярной (двухпоточной). В двухтрубной системе приборы отдельно присоединя­ются к двум трубам — подающей и обратной, и вода проте­кает через каждый прибор независимо от других приборов.

 

2. При паровом отоплении в приборах выде­ляется теплота фазового превращения в результате конден­сации пара. Конденсат удаляется из приборов и возвраща­ется в паровые котлы.

Системы парового отопления по способу возвращения кон­денсатав паровые котлы разделяются на замкнутые с самотечным возвращением конденсата и разомкнутые с перекачкой конденсата насоса­ми. В замкнутой системе конденсат непрерывно поступает в котлы под действием разности давления, выраженного столбом конденсата высотой h и давления пара рп в котлах. Поэтому отопительные приборы должны находиться достаточно высоко над паросборниками котлов (в зависимости от давления пара в них).

В разомкнутой системе парового отопления конденсат из отопительных приборов непрерывно поступает в конденсатный бак и по мере накопления периодически перекачи­вается конденсатным насосом в котлы на тепловой станции. В такой системе расположение бака должно обеспечивать стекание конденсата из нижнего отопительного прибора в бак, а давление пара в котлах преодолевается давлением насоса.

В зависимости от давления парасистемы парового отоп­ления подразделяются на субатмосферные, вакуум-паровые, низкого и высокого давления.

В системах субатмосферного и вакуум-парового отопле­ния давление в приборах меньше атмосферного и темпера­тура пара ниже 100 °С. В этих системах можно, изменяя величину вакуума (разрежения), регулировать темпера­туру пара.

Теплопроводы систем парового отопления делятся на паропроводы, по которым пар перемещается от теплового центра до отопительных приборов, и конденсатопроводы для отвода конденсата

Конденсатопроводы могут быть самотечнными и напорными. Самотечные трубы прокладывают ниже отопительных приборов с уклоном в сторону движения конденсата. В напорных трубах конденсат перемещается под действием разности давления, создаваемой насосом или остаточным давлением пара в приборах.

В системах парового отопления преимущественно ис­пользуются двухтрубные стояки, но могут применяться и однотрубные.

 

3. При воздушном отоплении циркулирую­щий нагретый воздух охлаждается, передавая теплоту при смешении с воздухом обогреваемых помещений и иногда через их внутренние ограждения. Охлажденный воздух возвращается в тепловой центр.

Системы воздушного отопления по способу создания цир­куляции воздухаразделяются на системы с естественной циркуляцией (гравитационные) и с механическим побужде­нием движения воздуха с помощью вентилятора.

В гравитационной системе используется различие в плот­ности нагретого и окружающего воздуха. Как и в водяной вертикальной гравитационной системе, при различной плот­ности воздуха в вертикальных частях возникает естествен­ное движение воздуха в системе. При применении вентиля­тора в системе создается вынужденное движение воздуха.

Воздух, используемый в системах отопления, нагрева­ется до температуры, обычно не превышающей 60 °С, в специальных теплообменниках — калориферах. Калорифе­ры могут обогреваться паром, водой, электричеством или горячими газами; система воздушного отопления соответ­ственно называется водовоздушной, паровоздушной, элект­ровоздушной, газовоздушной.

Воздушное отопление может быть местным и центральным.

В местной системе воздух нагревается в отопительной установке с теплообменником (калорифером или другим отопительным прибором), находящимся в обогреваемом помещении. В центральной системе теплообменник (калорифер) размещается в отдельной камере — тепловом центре. Воз­дух при температуре tв подводится к калориферу по обрат­ным воздуховодам, горячий воздух при температуре tг, перемещается вентилятором в помещения по подающим воздуховодам.

 


Лекция 2

 

Защитные свойства наружных ограждений. Тепловая мощность системы отопления. Теплоустойчивость ограждений. Влияние воздухопроницания и влажности материалов на теплопередачу через ограждение. – 1 час.

Зимний тепловой режим помещения

 

В холодный период года ограждения защищают помещение от низких наружных температур и ветра, а система отопления под­держивает в нем определенную температуру.

Постоянство температурной обстановки в помещении должно быть выдержано при наличии холодных поверхностей наружных ограждений и нагретых поверхностей приборов системы отопления. Холодные и нагретые поверхности вызывают конвективные воздуш­ные потоки и являются источниками с «положительного» и «отрица­тельного» излучения, которые тем интенсивнее, чем больше разности температур. Температура наружного воздуха непрерывно изменяется. Следом за ней изменяются температуры поверхностей в помещении. Наибольшие разности температур будут наблюдаться в самые су­ровые периоды зимы, Если наружные ограждения и система отопле­ния обеспечат удовлетворительные условия в помещении в этот от­резок времени, то они смогут поддержать необходимые условия и в течение всей зимы.

Интенсивные токи холодного воздуха, потеря тепла излучением или, наоборот, чрезмерное количество, излучаемого тепла создают у людей, находящихся в помещении, ощущение неприятного пере­охлаждения или перегрева. Такая обстановка в помещении может привести к простудным и другим заболеваниям.

Решая задачу отопления помещения, необходимо рассчитать ог­раждения и обогревающие устройства так, чтобы они обеспечивали требуемые тепловые условия в обслуживаемой (рабочей) зоне в те­чение всего отопительного периода.

 

Защитные свойства наружных ограждений

 

Ограждения здания должны обладать требуемыми теплозащит­ными свойствами и быть в достаточной степени воздухо- и влаго­непроницаемыми.

Теплозащитные свойства наружных ограждений определяются двумя показателями: величиной сопротивления теплопередаче R0 и теплоустойчивостью, которую оценивают по величине характе­ристики тепловой инерции ограждения D. Величина R0 определяет сопротивление ограждения передаче тепла в стационарных ус­ловиях, а теплоустойчивость характеризует сопротивляемость ог­раждения передаче изменяющихся во времени периодических теп­ловых воздействий.

В зимних условиях теплозащитные свойства ограждений принято характеризовать в основном величиной R0, а в летних — также их теплоустойчивостью. Это объясняется тем, что для зимы характерны устойчивые температуры вне здания и постоянные внутренние тем­пературы, которые обеспечивает система отопления. Летом харак­терны периодические суточные изменения наружной температуры и солнечной радиации, внутри здания температура обычно не ре­гулируется.

Наиболее важным является определение расчетного сопротивле­ния теплопередаче R0 основной части (глади) конструкции ограж­дения, с которого обычно и начинают теплотехнический расчет ограждения. Необходимым является условие, при котором R0 долж­но быть равно или больше минимально допустимого по санитарно-гигиеническим соображениям (требуемого) сопротивления R0 тр., теплопередаче:

 

R0> R0 тр.

 

Однако этого условия недостаточно, так как при определении R0 должны учитываться также технико-экономические показа­тели. Если оказывается, что экономически оптимальное сопротив­ление R0 опт теплопередаче ограждения больше R0тр, то расчетное сопротивление должно определяться по условию:

 

R0 опт> R0 тр.

 

В этом случае сопротивление R0 больше минимально допустимого и целесообразнее в экономическом отношении.

После определения R0 глади ограждения необходимо проверить теплозащитные свойства элементов конструкции (стыки, углы, вклю­чения). Необходимым и достаточным условием этого расчета явля­ется отсутствие выпадения конденсата на внутренней поверхности конструкции.

Для расчета теплопотерь и тепловых условий в помещении часто кроме R0 необходимо рассчитывать приведенное сопротивление R0 пр. теплопередаче ограждения.

Для зданий, расположенных в южных районах, дополнительно проверяют теплоустойчивость ограждений в расчетных летних усло­виях. Недостаточную теплоустойчивость ограждения для зимнего периода учитывают увеличением его сопротивления теплопередаче при расчете R0 тр.

Для заполнения оконных и дверных проемов теплозащитные свой­ства регламентируются только сопротивлением теплопередаче конструкции, которое должно быть не ниже установленного СНиПом. Допустимая воздухопроницаемость окон, дверей, стыков конструк­ций, стен и перекрытий здания определяется нормируемым сопротив­лением Rн.тр. воздухопроницанию, расходом воздуха, дополнитель­ными затратами тепла, понижением температуры поверхности конст­рукции при инфильтрации.

Влагозащитные свойства ограждения должны исключать пере­увлажнение материалов атмосферной влагой и за счет диффузии во­дяных паров из помещения. Процессы передачи тепла, фильтрации и переноса влаги взаимосвязаны, и одно явление оказывает влияние на другое, поэтому определение сопротивлений тепло -, воздухо - и влагопередаче должно проводиться, как общий расчет защитных свойств наружных ограждений здания.

 

Оптимальное сопротивление теплопередаче ограждения.

 

В настоящее время в строительстве широко распространены де­шевые и эффективные теплоизоляционные материалы. Применяя их, часто оказывается выгоднее делать ограждение более утепленным, чем это необходимо по санитарно-гигиеническим требованиям. Эко­номически оптимальное сопротивление теплопередаче ограждения оказывается больше требуемого R0 тр., и конструкцию сле­дует выбирать по условию (95). Определение R0 опт является сложной технико-экономической задачей, которая, однако, может быть решена аналитически с учетом некоторых упрощающих предпосылок.

Экономической характеристикой, определяющей рациональность конструктивного решения, является величина приведенных затрат А, руб./м2:

А = К+ЭТ,

 

где К — капитальные затраты на ограждение и сопряженные с ним системы отопления и охлаждения помещения, зависящие от сопро­тивления теплопередаче ограждения, руб./м2; Э — эксплуатационные расходы, которые складываются в основном из стоимости теряемого через ограждение тепла (холода) и затрат на восстановление и ка­питальный ремонт ограждения и сопряженных систем, руб./м2 в год; Т — нормативный срок окупаемости дополнительных капитальных вложений, равный 8,33 годам.

Наиболее целесообразной в экономическом отношении будет та­кая теплозащита, ограждения, для которой приведенные затраты будут минимальными.

Оптимальное сопротивление должно быть определено с учетом затрат на систему отопления и отчислений на амортизацию и текущий ремонт. В расчете должны быть учтены затраты на системы кондиционирования, а также стоимость холода, который расходуется летом на ассимиляцию тепла, поступающего через ограждение. С учетом некоторых упрощающих предпосылок формула оптимального сопротивления при круглогодичном обеспечении системами заданного микроклимата в помещениях жилых и общественных зданий может быть записана в виде:

где характеристики с индексом «с. к.» относятся к системе летнего кондиционирования; tусл. 0 — расчетная наружная температура для летнего периода (средняя условная температура расчетных суток),

t в. л — температура в помещении летом; tусл. охл и nохл — средняя условная температура и продолжительность охла­дительного периода (период работы системы охлаждения помещения); Sx — стоимость холода руб./Дж (руб./ккал), Sс.о.- изменение затрат на систему отопления при изменении ее мощности на 1 Вт; СС. о., Согр. – ежегодные отчисления на амортизацию и текущий ремонт от капитальных затрат на систему отопления и ограждение, 1/год; Sт – стоимость теряемого через ограждение тепла руб.../Дж; tо.п. и n о.п. – температура и продолжительность отопительного периода, ч/год; Sиз.- стоимость изоляции в конструкции ограждения, руб./м3

Определение наибольших потерь тепла помещением

 

Наибольшие потери тепла помещением определяют установочную мощность системы отопления. В общем виде потребность в дополни­тельном тепле от системы отопления Qот возникает при положи­тельном значении величины теплового баланса:

 

Qот = Qогр + Qи – Qтех – Qс.р

 

где Qогр — теплопотери помещением за счет теплопередачи через наружные ограждения; Qи — расход тепла на нагрев инфильтрующегося наружного воздуха; Qтех — внутренние (технологические и бытовые) тепловыделения, Qс.р — теплопоступления за счет солнечной радиации.

Потери тепла через отдельные ограждения определяют по формуле:

 

где R0пр — приведенное сопротивление теплопередаче ограждения, n— коэффициент, уменьшающий расчетную разность температур (tв–tн); F — пло­щадь ограждения; η — коэффициент, учитывающий дополнительные теплопотери через ограждение.

Величина расчетных теплопотерь через отдельные ограждения будет соответствовать коэффициенту обеспеченности Коб, с учетом которого выбрано значение tн в формуле (99). Наружные ограждения в помещении имеют различную тепло­устойчивость. Через ограждение с малой теплоустойчивостью (окна, легкие конструкции) теп­лопотери при похолодании будут резко возрастать, практически следуя во вре­мени за изменением темпе­ратуры наружного возду­ха. Через теплоустойчивые ограждения потери тепла при похолодании возрас­тут немного, и во времени эти изменения будут зна­чительно отставать от на­ружной температуры. Мак­симальные потери тепла помещением в расчетных условиях не будут равны сумме потерь через отдель­ные ограждения. Сложение необходимо провести с уче­том сдвига во времени теп­лопотерь через отдельные ограждения.

В период резкого похолодания, как показывают расчеты и наб­людения, теплопотери через окна составляют до 80% от об­щих потерь. Основываясь на этих данных, можно также считать, что наибольшие потери тепла помещением Qпом совпадают во времени с наибольшими теплопотерями через окна. Окна практи­чески не обладают тепловой инерцией, поэтому момент времени и величина наибольших теплопотерь через них практически совпа­дают во времени и по величине с минимальной наружной темпера­турой. Величину Qпом в связи с этим удобно определить в виде:

 

Qпом = Qок + Qi

где Qок — наибольшие теплопотери через окна (безынерционные ограждения), определяемые по формуле (99) при tн = tно— аtн ; Qi — сумма теплопотерь через прочие теплопередающие ограж­дения помещения в момент наибольших теплопотерь через окна. Величина Qi для теплоустойчивого ограждения равна:

 

Qi = Qiо + ∆Qi

 

Где Qiо — теплопотери в начале периода резкого похолодания при tн = tно по формуле (99); ∆Q— дополнительные теплопотери, соответствующие наружной температуре в момент наибольших теплопотерь через окна.

При определении установочной тепловой мощности системы отоп­ления по СНиПу теплопотери через отдельные ограждения расчиты­вают при tн = t5. Из предыдущего рассмотрения теплового режима ограждения в период резкого похолодания видно, что определенная по рекомендациям норм потеря тепла за счет теплопередачи может заметно отличаться от максимальных (для принятого Коб) значений.

Необходимое количество тепла на нагрев инфильтрующегося в помещение наружного воздуха определяется по формуле:

 

Qи = Lи c ρн (tв–tн)A

где Lи — часовой объем инфильтрующегося наружного воздуха; с — массовая теплоемкость воздуха; ρн — плотность наружного воз­духа; А — коэффициент, учитывающий влияние встречного тепло­вого потока (экономайзерный эффект).

В случае отсутствия компенсации вытяжного воздуха подогретым приточным воздухом часовой расход инфильтрующегося наружного воздуха определяется нормируемым по санитарно-гигиеническим ус­ловиям воздухообменом.

Для наиболее точного расчета величины Qи количество инфильтрующегося воздуха Lи необходимо рассчитывать с учетом фактиче­ского воздухообмена в здании.

Внутренние теплопоступления складываются из поступлений тепла от электропотребляющих источников, приборов для приготовления пищи, системы горячего водоснабжения, людей. Существующими нор­мами (применительно к жилым зданиям) теплопоступления оцени­ваются величиной порядка 20,9 В (18 ккал/ч) на 1 м2 площади по­мещения. Однако, в расчете отопительной нагрузки следует учитывать, что часть этого тепла расходуется на некоторый догрев воздуха по­мещения от допустимой (расчетной для системы отопления) темпе­ратуры до оптимальной, а также на неизбежный перегрев уходящего вентиляционного воздуха.

В настоящее время при определении расчетной отопительной на­грузки нормы не учитывают теплопоступления за счет солнечной ра­диации. Однако, на тепловой баланс помещений, а, следовательно, и на режим работы отопления они оказывают существенное влияние, что особенно важно при определении текущей отопительной нагрузки, выборе схем и режима регулирования системы отопления.

Точный учет возможных теплопоступлений в помещения является дополнительным резервом для уменьшения тепловой нагрузки сис­темы отопления и экономии тепла. Способы определения расчетных теплопотерь и соответствующие расчетные приемы подробно рассмат­риваются в курсе «Отопление».

 

Обогрев помещения

 

Отопительный прибор передает тепло от теплоносителя сис­темы отопления обогреваемому помещению. Его конструкция, способ установки и присоединения к системе отопления должны всесторонне оцениваться по теплотехническим, экономическим, техническим и эстетическим показателям. Для этого определяют количество затра­чиваемого на обогрев помещения тепла, оптимальные формы прибора, доли отдаваемого им конвективного и лучистого тепла и оценивают степень оптимальности микроклимата, создаваемого нагревательным прибором.

Использование прибора той или иной конструкции и его установ­ка в различных местах помещения не должны приводить к заметному перерасходу тепла. Показателем, оценивающим эти свойства, является отопительный эффект прибора. Он показывает отношение количества отдаваемого прибором тепла для создания в помещении заданных тепловых условий к расчетным потерям тепла.

Считается, что наилучшим отопительным эффектом обладают панельно-лучистые приборы, установленные в верхней зоне помещения или встроенные в конструкцию потолка. У таких приборов отопительный эффект равен 0,9—0,95, т. е. теплоотдача потолочных панелей-излучателей может быть даже несколько ниже расчетных теплопотерь помещения, без ухудшения комфортности внутренних условий. У нагретой поверхности пола отопительный эффект равен ~ 1,0.

Наиболее распространенные приборы-радиаторы обычно устанав­ливают в нишах или около поверхности наружной стены. Поверхность за радиатором перегревается, и тепло бесполезно теряется через эту часть наружной стены Отопительный эффект радиаторов оценивают величиной 1,04—1,06. Лучше радиатора оказываются конвек­торы, располагаемые вдоль наружной стены Отопительный эффект, например, плинтусного конвектора равен 1,03. Подоконная панель, встроенная в конструкцию наружной стены, имеет заметные бес­полезные потери тепла и ее отопительный эффект равен 1,1.

Комфортность тепловой обстановки в помещении зависит не толь­ко от количества поступающего тепла, но и от места установки на­гревательного прибора в помещении, а также его геометрии. Нагре­вательные приборы, компенсируя теплопотери, должны также вы­полнять роль локализаторов источников холода в помещении. Поэтому, нагретая поверхность прибора и струя теплого воздуха над ним должны предупредить радиационное переохлаждение и попадание холодных токов воздуха в обслуживаемую зону помещения.

Идеальным в этом отношении является решение, когда все наруж­ные ограждения равномерно обогреваются и в помещении отсутству­ют охлажденные поверхности.

Хорошие тепловые условия в помещении создают приборы, рас­положенные под окнами вдоль наружной стены. В этом случае об­служиваемая зона и особенно область у пола помещения, которая особенно подвержена переохлаждению ниспадающими токами воз­духа, защищается в тепловом отношении наиболее эффективно

В детских яслях и садах желательно устраивать обогреваемый пол или применять плинтусные приборы, равномерно обогревающие по периметру всю нижнюю зону помещения. Специальные теплые дорожки делаются в помещении бассейнов Обогрев пола желателен в вестибюлях и переходах. В промышленных цехах необходим спе­циальный подогрев холодных перекрытий и фонарей, который должен предупредить образование «падающих» в рабочую зону токов холодного воздуха. В верхней зоне помещения располагают приборы-излучатели, которые подвешивают в виде лент на некотором расстоя­нии от потолка. Излучением тепла они равномерно обогревают рабочую зону. Конвективная составляющая их теплоотдачи нагревает воздух и компенсирует теплопотери перекрытия, предупреждая образование холодных токов воздуха.

В помещениях небольшой глуби­ны, когда расстояние от наружных стен до противоположной внутренней стены невелико, приборы можно рас­полагать у внутренних стен. Система отопления в этом случае оказывается компактной.

Оценка эффективности обогрева помещения при различных нагревательных приборах может быть приближенно дана по распределению температуры по высоте помещения. Образование тепловой подушки у потолка и перегрев верх­ней зоны помещения увеличивают по­тери тепла. Наилучшим является обо­грев при равномерном распределении температуры по высоте.

 

Лекция 3

 

Отопительные приборы. Выбор и размещение отопительных приборов. Теплопередача приборов. Коэффициент теплопередачи отопительного прибора. Тепловой расчет отопительных приборов. Расчет площади нагревательной поверхности отопительных приборов. – 1 час.

Требования, предъявляемые к отопительным приборам

 

Отопительные приборы — один из основных элементов систем отопления — предназначены для теплопередачи от теплоносителя в обогреваемые помещения.

Расход теплоты на отопление каждого помещения определяется по тепловому балансу для поддержания в нем необходимой температуры при расчет­ных зимних условиях. В этих условиях, т. е. при темпера­туре наружного воздуха, расчетной для системы отопления здания, расход теплоты на отопление или теплопотребность помещения Qn должна компенсироваться тепло­отдачей отопительного прибора Qnp и нагретых труб Qтр

 

Qп= Qпp + Qтр

 

Эта суммарная теплоотдача в помещение, необходимая для поддержания заданной температуры, в системе отопле­ния называется тепловой нагрузкой отопительного прибора.

В тепловую нагрузку Qп не входят дополнительные теплопотери Qдoп, обусловленные прогрева­нием ограждающей конструкции в месте установки отопи­тельного прибора, как заранее неизвестные (они зависят от типоразмера прибора).

Следовательно, от теплоносителя в помещение должен передаваться тепловой поток Qт,превышающий расчетную теплопотребность Qп на величину дополнительных теплопотерь Qдоп:

 

Qт= Qп + Qдоп

 

Дополнительные теплопотери Qдоп принято выражать в долях основных теплопотерь.

Каждый отопительный прибор должен иметь определен­ную площадь нагревательной поверхности Апр, м2, рассчитываемую (см. ниже) в со­ответствии с требуемой тепло­отдачей прибора. Для обеспе­чения необходимой теплоот­дачи в прибор должно пос­тупать также определенное количество теплоносителя в единицу времени G, кг/с (кг/ч), называемое расходом тепло­носителя.

К отопительным приборам как к оборудованию, устанав­ливаемому непосредственно в обогреваемых помещениях, предъявляются требования, дополняющие и уточняющие требования к системе отопления:

1 — санитарно-гигиенические — относительно пони­женная температура поверхности; ограничение площади горизонтальной поверхности приборов для уменьшения отложения пыли; доступность и удобство очистки от пыли поверхности приборов и пространства вокруг них;

2 — экономические— относительно пониженная стои­мость прибора; экономный расход металла на прибор, обеспечивающий повышение теплового напряжения ме­талла.

3— архитектурно-строительные — соответствие внеш­него вида приборов интерьеру помещений, сокращение площади помещений, занимаемой приборами. Приборы должны быть достаточно компактными, т. е. их строительные глубина и длина, приходящиеся на единицу теплового потока, должны быть наименьшими;

4— производственно-монтажные — механизация изго­товления и монтажа приборов для повышения производи­тельности труда; достаточная механическая прочность приборов;

5— эксплуатационные — управляемость теплоотдачи приборов, зависящая от их тепловой инерции; температуроустойчивость и водонепроницаемость стенок при предельно допустимом в рабочих условиях (рабочем) гидростатическом давлении внутри приборов.








Дата добавления: 2016-04-06; просмотров: 1421;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.043 сек.