РЕКОНСТРУКЦИЯ 9-ЭТАЖНЫХ ЖИЛЫХ ЗДАНИЙ 8 страница
В состав полигона входят также передвижная арматурная мастерская в блочном исполнении, автобетоновоз, автокран для подачи бетонной смеси, установка для прогрева бетона, пневмонагнетатель для отделки поверхностей штукатурными составами и др. средства механизации.
Технологическая эффективность процессов возрастает при использовании методов ускоренного твердения бетона, применении различного рада добавок, а также раздельной технологии приготовления бетона. Последнее обстоятельство обеспечивает не только повышение физико-механических характеристик бетона, но и снижает цикл набора прочности. Используя прогрессивные технологии ускоренного твердения бетона, достигается суточная оборачиваемость опалубочных систем, что обеспечивает требуемую ритмичность и существенно интенсифицирует производство работ.
Технологическая гибкость ритмичного потока обеспечивает выпуск объемных блоков различной конфигурации и разнообразным уровнем отделки наружных поверхностей. Это позволяет существенно расширить архитектурную гамму решений при более низкой себестоимости работ.
Технологически эффективным является изготовление блоков в металлической опалубке с камерным прогревом бетона, когда в полости блоков размешают теплогенераторы мощностью, обеспечивающей температурный режим в пределах 60-80 °С. Это создает определенную универсальность независимо от геометрической формы блока и получение распалубочной прочности в пределах 60-70 % Rб. Тепловая обработка бетона целесообразна как в зимнее, так и летнее время. При зимнем производстве работ осуществляется утепление наружной опалубки и пространства перекрытия.
На рис. 14.20 приведена технологическая схема тепловой обработки теплогенераторами с графиком набора прочности бетона.
Рис. 14.20. Технологическая схема тепловой обработки бетона объемных блоков с использованием теплогенераторов
а, б - схема размещения теплогенераторов и утепления поверхностей форм; в - температурные графики бетона и набора прочности бетоном (г);
1 - металлическая опалубка блока; 2 - проемообразователи; 3 - утепление наружных поверхностей опалубки; 4 - то же, открытых поверхностей плиты перекрытия; 5 - теплогенераторы
Для снижения теплопотерь и более интенсивной тепловой обработки целесообразно опалубку объемных блоков совмещать открытыми поверхностями. Это позволяет исключить дополнительные затраты по устройству теплозащитных штор и создавать более однородные тепловые поля.
Анализ производства работ показал, что наиболее эффективным является совмещение технологии утепления стеновых конструкций с пристраиваемыми элементами. Поэтому их изготовление целесообразно выполнять без утепления поверхностей.
Практическая реализация проекта реконструкции домов массовых серий наиболее эффективна, когда число объектов составляет 5-6 зданий, локально расположенных в определенном секторе квартала (рис. 14.21). Такое решение позволяет организовать долгосрочные потоки по устройству фундаментов под пристраиваемые объемы, обстройке и надстройке зданий, перекладке сетей и благоустройству площадок.
Рис. 14.21. Технологическая последовательность производства работ при реконструкции пяти жилых зданий и фрагмент стройгенплана
Ведение обстройки отдельным технологическим потоком и надстройки зданий позволяет выполнять объемы строительно-монтажных работ с максимальным совмещением технологических процессов и более рациональным использованием во времени грузоподъемных средств.
Технологическая надежность монтажных процессов надстройки зданий определяется интенсивностью доставки, укрупнительной сборки и доводки блоков. Для этой цели создаются временные площадки складирования, укрупнения и комплектации объемных блоков. Процесс подготовки складывающихся объемных блоков осуществляется с применением автокрана КС-6476 с последующими погрузкой и доставкой к месту монтажа специальными автотранспортными средствами.
В объем предмонтажных работ входят: устройство кровельного покрытия, установка оконных блоков, тепло- и гидроизоляция узлов и другие технологические процессы.
Готовые блоки подаются под монтаж в соответствии с часовым графиком производства работ.
После выполнения монтажного цикла на захватке (секции жилого дома) специализированными потоками осуществляется комплекс работ по внутренней планировке, выполнению специальных и отделочных работ.
Средняя продолжительность реконструкции. 4-секционного жилого дома с 2-этажной надстройкой составляет 4,5-6 мес.
§ 14.5. Технологические особенности возведения многоэтажных вставок
Наряду с надстройкой этажей высокий технологический эффект достигается путем устройства различных по высоте и площади вставок между существующими зданиями и торцевыми пристройками.
Размер вставок (плановые габариты) зависит от типа застройки и колеблется в достаточно широких пределах. Для периметральной замкнутой и полузамкнутой застройки расстояние между жилыми домами составляет 25-30 м, для смешанной застройки - 32-39 м, строчной - до 30 м, свободной - 25-33 м.
Учитывая достаточно широкий диапазон этого параметра, проектирование встроек осуществляется в монолитном железобетоне по стеновой или безбалочной каркасной схеме, а также с кирпичными несущими стенами по индивидуальным проектам.
На рис. 14.22 приведено проектное решение комплексной реконструкции двух жилых домов с 2-этажной надстройкой и встройкой нового 12-этажного здания длиной 26,4 и шириной 19,6 м.
Рис. 14.22. Реконструкция жилых зданий с надстройкой этажей и устройством многоэтажной вставки
Реализация проекта позволяет получить около 1800 м2 за счет надстройки этажей и более 3000 м2 площади встройки.
Технология производства работ предусматривает первоначальное возведение встройки, которая служит переселенческим фондом, с последующей реконструкцией поочередно двух корпусов зданий с надстройкой мансардного этажа и двухэтажной надстройки.
При проектировании и возведении встроенных зданий особое внимание должно уделяться исследованиям геологической структуры грунтов, физико-механическим и деформативным характеристикам, определяющим их несущую способность.
Важное место отводится детальным обследованиям фундаментов существующих зданий на предмет их усиления известными методами и технологиями.
При возведении заглубленных частей встроек необходимо осуществлять геотехнические расчеты путем численного моделирования методом конечных элементов (МКЭ) с программным обеспечением «Геомеханика», Plaxis, Flac и др.
Наиболее универсальной является программа Plaxis, которая охватывает вопросы возведения фундаментов, земляных работ (устройство котлованов), расчеты устойчивости ограждающих стенок и их влияние на осадки и деформации примыкающих зданий.
К основным структурным элементам программы относятся: моделирование грунтов основания упругопластичной моделью Кулона-Мора, реологической моделью с учетом ползучести грунта, модели упрочняющегося грунта; моделирование строительных конструкций набором элементов: плитных для плоских конструкций; стержневых для моделирования анкеров, распорок, стоек и др.; моделирование последовательности технологических операций строительства, темпов возведения, условий работы конструкций и грунтового основания; создание расчетных схем с учетом неоднородности грунтов, геометрии сооружения, нагрузок с разбивкой расчетной области на конечные элементы с возможностью общего или локального изменения сетки; оперативный анализ развития напряженно-деформированного состояния на любом этапе расчетов или технологии производства работ.
На рис. 14.23 приведены варианты расчета деформации системы «основание-сооружение» для ограждения котлована в виде консольной стенки с распорными и грунтовыми анкерами, а также деформации примыкающих зданий.
Рис. 14.23. Расчетные значения деформаций на момент начала потери устойчивости ограждения котлована консольной стенки (а) и окончание разработки котлована с анкерным креплением стенок (б)
Опыт строительства встроенных зданий, особенно при наличии слабых и водонасыщенных грунтов, показывает, что наиболее опасным последствием является неравномерная осадка примыкающих частей зданий, что приводит к значительным аварийным повреждениям.
Начальная фаза деформаций проявляется в образовании наклонных трещин в кирпичных или панельных стенах с последующим развитием ширины раскрытия и потерей несущей способности.
Значение деформаций фундаментов (неравномерных осадок) приведено на рис. 14.24 для условий С.-Петербурга, когда возводимая встройка привела к необратимым деформациям прилегающих жилых зданий. Рост этого параметра возрастал по мере возведения здания за счет увеличения технологических нагрузок и деформаций основания.
Рис. 14.24. Схема осадки и деформации примыкающих частей зданий и встроенного объекта за период эксплуатации 10 лет
а - схема размещения встроенного здания; б - разрез по 1 - 1; в - графики осадки фундаментов для различных периодов наблюдения; 1 - кривая осадки фундаментов после возведения встройки; 2, 3 - через 5 и 10 лет; I - часть зданий, получивших сильные повреждения; II - аварийные повреждения
Исключить негативное влияние возможно путем сочетания процессов усиления фундаментов и устройства разделительных стенок, ограничивающих перемещение фундаментов существующих зданий.
Устройство разделительных стенок
Технология устройства разделительных стенок должна обеспечивать геометрическую неизменяемость примыкающих зданий, исключить возникновение осадок, приводящих к концентрации напряжений в несущих конструкциях и образованию трещин, их дальнейшему раскрытию и развитию деформаций.
Основное назначение разделительных стенок состоит в восприятии бокового давления от фундаментов и грунта, предотвращении вытекания грунтового массива из-под рядом стоящих фундаментов, изменении структуры фунтов вследствие разуплотнения при динамических воздействиях, под действием восходящих потоков подземных вод в результате водопонижения, выдавливания плывунных грунтов во время разработки котлованов.
Наиболее интенсивно возникновение осадок фундаментов существующих зданий наблюдается при водонасыщенных фунтах в момент откачки воды из разрабатываемого котлована или производства работ по водопонижению. Эти условия требуют создания разделительных стенок, выполняющих функции противофильтрационных завес с высокой степенью водонепроницаемости.
Особый случай представляет собой наличие линз плывуна. Если разделительная стенка не отсекает эту область, то в процессе разработки котлована возможны ее дрейф в область более низкого давления и возникновение осадок, приводящих к существенным деформациям зданий. Большое влияние на осадку фундаментов оказывает масса встраиваемого здания. При превышении определенных параметров наблюдается эффект воронкообразования, что также приводит к большим деформациям прилегающих к котловану частей фундаментов существующих зданий.
В зависимости от конструктивного решения разделительные стенки могут выполнять, кроме ограждающих и противофильтрационных, функции несущих фундаментов стен.
В ряде случаев возникает необходимость увеличения пространственной жесткости реконструируемых зданий, которое достигается путем закладки оконных и дверных проемов первых этажей, усилением фундаментов известными технологиями.
Варианты устройства разделительных стенок приведены на рис 14.25.
Рис. 14.25. Способы устройства разделительных стенок
а, б - шпунтовое ограждение, погружаемое вибрацией и вдавливанием; в - металлическими завинчивающимися сваями; г - грунтоцементными сваями по струйной технологии; д - буроинъекционными сваями с электроимпульсным уплотнителем; е - секущими сваями
Они включают шпунтовое ограждение (а, б), устройство стенок из металлических завинчивающих свай (в), грунтоцементных свай и массивов (г), буроинъекционных и секущих свай (д, е) и др.
Выбор метода и технологии производства работ зависит от инженерно-геологических условий площадки, состояния конструктивных элементов, существующих построек, глубины заложения заглубленной части встраиваемых зданий, их конструктивной схемы, габаритных размеров и массы.
Основная задача при оценке геотехнической ситуации состоит в определении типа фундаментов встраиваемого здания, обеспечивающего надежность и безопасность окружающей застройки, а также выбора технологий, не оказывающих негативного воздействия на грунты основания и фундаменты соседних строений.
Из нормативных источников и практического опыта следует, что технологии, основанные на использовании ударных и виброударных режимов погружения свай, железобетонных шпунтовых ограждений и подобных конструкций, приводят к значительным динамическим воздействиям на здания при ускорении более 0,2-0,4 м/с2 и способствуют возникновению и развитию опасных деформаций.
Устройство шпунтовых ограждений
Наиболее технологичны металлические шпунтовые ограждения Z- и U-образной геометрических форм длиной 8-22 м. Они имеют относительно высокий момент сопротивления по отношению к площади поперечного сечения и обладают высокой несущей способностью. Используются для устройства разделительных стенок при глубине котлована 8-12 м.
Технология устройства шпунтового ограждения осуществляется методом вибрационного погружения и вдавливания.
Вибрационное погружение основано на эффекте снижения сил трения между частицами грунта в результате распространения волнового поля от колеблющейся поверхности шпунта. Под действием вибрации грунт приходит в состояние течения (псевдоожижения), тем самым снижая силы сопротивления погружению. Определяющее влияние на эффект погружения оказывает интенсивность колебаний, которая оценивается ускорением колебательного процесса.
В зависимости от частоты колебаний изменяются параметры волновых полей и радиус их действия (коэффициент затухания). Установлено, что увеличение частоты от 50 до 200 Гц приводит к снижению радиуса действия при одновременном повышении технологического эффекта погружения.
Практическими опытами установлено, что использование вибропогружателей с частотой колебаний до 50 Гц и амплитудой 0,6-1,2 мм создает волновые поля с радиусом действия до 3 м. Это обстоятельство способствует нарушению структуры грунта, прилегающего к фундаментам, и воронкообразованию вокруг шпунта за счет течения и уплотнения.
Высокочастотная вибрация (200 Гц и более) при одной и той же интенсивности колебаний снижает радиус действия до 0,2-0,3 м, что вызвано более высоким коэффициентом затухания. Такие режимы исключают негативное воздействие на реконструируемые здания.
Более безопасным способом погружения шпунта является метод вдавливания. Он основан на использовании специальной системы гидравлических домкратов (установка УСВ-120), обеспечивающих развитие усилий вдавливания до 120 т.
Для обеспечения совместной работы элементов шпунтовой стенки и ее устойчивости осуществляются монтаж продольных поясов жесткости распорных систем или устройство грунтовых анкеров. Производство работ по их установке осуществляется по мере поярусной разработки грунта в котловане.
Если шпунтовые элементы не являются частью возводимого фундамента, их извлекают в целях повторного использования.
Ограждение из бурозавинчивающихся металлических свай
Наиболее технологичным и экономически эффективным является устройство стенок из бурозавинчивающихся труб. Этот способ основан на завинчивании металлических труб диаметром до 426 мм, оснащенных винтовой навивкой из арматуры диаметром 10-16 мм с шагом 200-400 мм (рис. 14.26). Завинчивание труб осуществляется станком СО-2 при их длине от 4 до 20 м.
Рис. 14.26. Технологические схемы производства работ по ограждению котлована бурозавинчивающимися сваями (а), производство земляных работ и устройство свайно-плитного фундамента (б), общий вид бурозавинчивающейся сваи (в, г)
В связи с тем что при завинчивании труб отсутствуют удары и вибрация, а также достигается уплотнение грунта, окружающего трубу, то данная технология позволяет вести работы в непосредственной близости от существующих построек. Для зданий высотой до 5 этажей расстояние до плоскости фундаментов может составлять 0,4 м, а более 5 этажей - 0,7 м.
Технология предусматривает сплошное или разреженное расположение труб с последующим их омоноличиванием или устройством железобетонных буронабивных свай. Последний вариант основан на завинчивании труб с теряемым наконечником, армированием полости трубы, подачей литой бетонной смеси в полость трубы и ее извлечением путем вывинчивания. Объединение полученных свай с помощью ростверка обеспечивает их совместную работу, что существенно повышает несущую способность.
Процесс устройства котлованов состоит в разработке грунта I яруса, выполнении работ по формированию обвязочных поясов и установке распорных систем, воспринимающих боковое давление грунта. Для обеспечения геометрической неизменяемости ограждающих стен заглубленной части разработка грунта осуществляется в центральной части котлована с устройством монолитной плиты, усиленной буронабивными сваями. В этом случае используются наклонные распорные анкеры, после установки которых осуществляется доработка грунта в зоне берм (рис. 14.26, б).
Данная технология успешно используется при устройстве ограждающих и ограждающе-несущих конструкций котлованов (фундаментов) при возведении зданий и подземных сооружений.
Она отличается высокой технологичностью, меньшей стоимостью производства работ и надежностью. Как правило, ограждение из завинчивающихся труб не извлекается после выполнения работ нулевого цикла.
Метод струйной технологии
Высокой степенью технологичности обладает метод струйной технологии устройства грунтоцементных свай и массивов, выполняющих функции как разделительных стенок, так и элементов усиления фундаментов.
Технология производства работ предусматривает создание разделительной стенки в виде пересекающихся свай из грунтоцемента. Для восприятия давления грунта сваи армируются жесткой арматурой в виде труб, а по мере разработки котлована могут устраиваться грунтовые анкеры или распорные системы.
Наиболее эффективным является подведение грунтоцементного массива под существующие фундаменты, который служит ограждающим элементом заглубленной части встраиваемого здания (рис. 14.27).
Рис. 14.27. Технологическая схема подведения грунтоцементного массива под существующие фундаменты (а) и последовательность работ на заходках (б)
1 - буровой станок; 2 - существующий фундамент; 3 - рабочий орган с форсунками; 4 - грунтоцементный массив; 5 - анкер; в - набор прочности грунтоцемента Rгц в зависимости от расхода цемента и времени твердения
При проектировании и выполнении работ следует учитывать опасность локальных деформаций в процессе временного размыва грунта и в период набора прочности грунтоцементного массива. Для исключения таких процессов предусматривается ограничение длины заходок не более 2 м с их чередованием в плане.
Определяющее значение физико-механических характеристик грунтоцементного массива зависит от структуры грунта, его однородности и изменения свойств по глубине. В этой связи для получения прочности в пределах 15-20 МПа расход цемента составляет от 350 до 700 кг/м3 (рис. 14.27, в).
Менее эффективна данная технология при основании в виде глинистых и торфянистых грунтов, когда физико-механические показатели не превышают 3,0-5,0 МПа со значительными колебаниями прочности по глубине.
Наибольший эффект достигается для песчаных и супесчаных грунтов различной гранулометрии.
Устройство стенок из свай по разрядно-импульсной технологии
Достаточно высокий технологический и экономический эффект достигается при использовании разрядно-импульсной технологии, которая обеспечивает повышение несущей способности за счет вовлечения грунтового массива в работу, локального уплотнения грунта, прилегающего к поверхности свай. Двухрядная система свай может использоваться как фундамент встройки.
Применение свай в ограждающих конструкциях позволяет при минимальной элевации грунта при бурении получить конструкцию, по жесткости и проницаемости практически не уступающую «стене в грунте», способную, кроме того, нести достаточно большую вертикальную нагрузку. Благодаря тому что грунт вокруг свай сильно уплотняется, а пески к тому же и цементируются, появляется возможность устройства свай на относительно большом расстоянии друг от друга, при этом нет необходимости устраивать забирки в межсвайном пространстве, так как в этом случае грунт между сваями достаточно устойчив и к тому же обладает малой водопроницаемостью.
Сваи могут располагаться как в один (рис. 14.28), так и в несколько рядов при размещении их в шахматном порядке. Для обеспечения пространственной жесткости стенки из нескольких рядов свай предусматривается устройство обвязочного пояса по верху свай в виде железобетонного ростверка.
Рис. 14.28. Схема устройства ограждающих стенок и фундаментов заглубленных частей зданий сваями, уплотненными по электроразрядной технологии
а - размещение свай относительно здания; б, в - варианты двухрядного и однорядного расположения свай
Для повышения водонепроницаемости стен можно применить цементацию межсвайного пространства, также выполняемую по электроразрядной технологии.
При значительной глубине котлованов возможно дополнительное крепление стенок фунтовыми анкерами, выполненными также по разрядной технологии.
Возведение разделительных стен между зданиями с использованием технологии буро-инъекционных свай является достаточно эффективным способом, обеспечивающим стабилизацию осадок существующих строений и возведение новых встроенных зданий.
Их технологической особенностью является создание свайного поля из пересекающихся свай, что обеспечивает формирование водонепроницаемого экрана. Армирование позволяет создавать разделительные стенки с высокими физико-механическими характеристиками в различных грунтовых условиях и использовать в качестве фундаментов.
Использование мобильного буроинъекционного комплекса позволяет выполнять работы в стесненных условиях городской застройки.
Применение буроинъекционных свай с электроимпульсным уплотнением бетона, несмотря на технологическую эффективность, имеет ряд ограничений. Область применения данной технологии ограничена несвязными грунтами, за исключением рыхлых водонасыщенных песков. Использование ЭИУ на песках и слабых глинистых грунтах недопустимо вследствие неконтролируемого разжижения и уплотнения грунтов и динамического воздействия на существующие фундаменты.
Метод секущих свай
Имеет ограниченное изменение при устройстве разделительных стенок в силу большой трудоемкости производства работ и высокой стоимости. Технология может быть использована при возведении стенок из свай большого диаметра (400-600 мм), которые могут использоваться в качестве несущих конструкций заглубленных стен и фундаментов.
Возведение многоэтажных вставок с заглубленной подземной частью
Возведение вставок наиболее технологично выполнять в монолитном железобетоне с использованием инвентарных опалубочных систем и легких башенных кранов.
Монолитный вариант позволяет реализовать современные планировочные решения при значительных колебаниях геометрических размеров встраиваемых зданий вследствие большого диапазона расстояний между реконструируемыми объектами.
Наибольшее распространение получила технология устройства фундаментов методом «стена в грунте».
Заглубленная часть здания может использоваться под стоянки для автотранспорта или другие технологические нужды.
Использование легких опалубочных щитов, ручная вязка арматурного заполнения, подача и укладка смесей бетононасосами позволяют создавать безопасные условия производства работ. Одними из приемов, обеспечивающих гарантированную защиту от случайных процессов, являются оснащение башенного крана автоматизированной системой, исключающей перемещение грузов в опасных зонах, устройство защитных козырьков, ограждений, размещение зон складирования, не препятствующих движению людских потоков, и др.
На рис. 14.29 приведена технологическая схема производства работ по возведению встройки.
Рис. 14.29. Технологическая схема возведения встроенного здания из монолитного железобетона с заглубленной подземной частью
1, 2 - реконструируемые здания; 3 - ограждение из буроинъекционных свай; 4 - стена фундамента; 5 - фундаментная плита; 6 - встроенный каркас; 7 - стеновое ограждение; 8 - бетоновод; 9, 10 - бетононасос с распределительной стрелой; 11 - башенный кран; 12 - грузоподъемник
Она включает работы по устройству подземной части, состоящие из: устройства разделительных стенок; возведения стен подвальной части с применением метода «стена в грунте» поярусного производства земляных работ по отрывке котлована с установкой обвязочных балок и анкеров, устройства дренажной системы, бетонной подготовки и гидроизоляции; армирования и бетонирования фундаментной плиты; комплекса работ по устройству встроенной системы заглубленной части.
Демонтаж распорных анкеров и подкосов производится после набора прочности бетоном стен и перекрытий более 70 %, что обеспечивает восприятие нагрузки бокового давления фунта и исключает деформации ограждения, выполненного по методу «стена в фунте».
После завершения нулевого цикла осуществляется поэтажное возведение несущего каркаса здания.
Технологический процесс возведения монолитных конструкций осуществляется по захватной системе со специализацией звеньев бригад по армированию, опалубливанию и возведению вертикальных и горизонтальных конструкций.
Для обеспечения ритмичной работы бригад используются средства механизации в виде башенного крана грузоподъемностью до 3 т, стационарного бетононасоса с распределительной стрелой для подачи и укладки бетонной смеси.
Для интенсификации технологических процессов используются средства теплового воздействия на бетон в виде греющих проводов, термоактивных щитов, химических добавок, ускоряющих процесс набора прочности бетоном.
При современных технологиях производства работ и поточных методах возведения достигается 5-7-суточный цикл возведения этажа.
Для обеспечения более ранней распалубки конструкций тепловая обработка бетона осуществляется и в летнее время.
С отставанием на 4-5 этажей выполняются цикл возведения стенового ограждения, работы по внутренней планировке помещений. Для возведения стен используются мелкоштучные энергоэффективные блоки с облицовкой кирпичом.
Цикл специальных и отделочных работ осуществляется специализированными звеньями и бригадами с совмещением работ по устройству стенового ограждения и внутренних планировочных работ.
Особое внимание уделяется контролю качества работ, геодезическому обеспечению и геотехническому сопровождению.
Наиболее эффективным с экономической точки зрения является возведение встроек с использованием примыкающей территории под заглубленные автостоянки. Такое решение повышает ликвидность квартир и создает более комфортные условия для жильцов.
На рис. 14.30 приведена технологическая схема возведения встройки с несущими конструкциями из монолитного железобетона и примыкающей одноярусной автостоянки с использованием площадей дворовой части.
Рис. 14.30. Технологическая схема возведения надземной части жилого здания (I) и заглубленной автостоянки (II)
1 - ограждение котлована; 2 - башенный кран; 3 - система трубопроводного транспорта бетонной смеси; 4, 5 - опалубочные системы при возведении перекрытия автостоянки
В зависимости от класса паркуемых машин шаг колонн может колебаться в пределах 6,0-7,2 м. Минимальная удельная площадь на одно машино-место составляет 21 м2 для стоянок манежного типа.
Дата добавления: 2016-03-22; просмотров: 490;