РЕКОНСТРУКЦИЯ 9-ЭТАЖНЫХ ЖИЛЫХ ЗДАНИЙ 4 страница
Как правило, для передвижки зданий используется несколько платформ с роликовыми опорами (рис. 12.9,д), которые подводят под обвязочные балки через проемы в торцевых стенах. При этом гидродомкраты размещают таким образом, чтобы их оси совпадали с осями внутренних стен.
После установки платформ осуществляются подъем здания на высоту 5-6 см и дальнейшее перемещение. Для обеспечения одновременного вертикального подъема осуществляется синхронизация работы гидродомкратов с помощью управляемого устройства к насосной станции и компьютерной системы слежения. В процессе перемещения по горизонтальным путям в случае просадки основания гидродомкраты позволяют обеспечить заданный уровень положения здания.
Технологический режим передвижки здания с помощью гидравлических домкратов является цикличным. Шаг перемещения соответствует ходу штока домкратов и составляет 500- 1000 мм. Каждый цикл состоит из установки упоров на рельсовых путях и синхронной работы домкратов. Максимальное усилие требуется в момент сдвижки здания, когда величина инерционных сил максимальна (рис. 12.9,г).
Усилие перемещения по горизонтали может быть рассчитано исходя из общей массы здания Р, количества опорных роликов п, их диаметра Æ и коэффициента трения качения f. С увеличением диаметра опорных роликов усилие перемещения снижается.
В общем виде требуемое усилие перемещения может быть определено по зависимости N=2PfK/Æ.
В то же время момент сил от гидродомкратов зависит от положения штоков относительно центра вращения роликовых опор. Как правило, гидродомкраты горизонтального действия размещают на обвязочных балках, чем и достигается плечо действия сил.
Для обеспечения непрерывного перемещения объектов целесообразно использовать спаренные домкраты, работающие в противофазе. Технологический эффект передвижки повышается при использовании упорных площадок, объединенных со штоком гидроцилиндров и имеющих фиксирующие устройства гидравлического действия.
§ 12.4. Опыт передвижки зданий в Москве
Массовая передвижка зданий в Москве осуществлена за период 1937-1941 гг., когда был принят новый генеральный план, направленный на расширение магистралей, строительство новых зданий, создание экологически чистых зеленых зон, проспектов и бульваров. За это время осуществлена передвижка более 20 зданий различной этажности, сложных по форме плана. Масса передвигаемых зданий составляла от 500 до 25000 т. Они перемещались на расстояние до 200 м.
Наиболее характерными представителями зданий того периода были: 1) жилой дом по ул. Осипенко, 77. В плане здание Г-образной формы с массой 8050 т. Передвижка осуществлена на расстояние 44 м с поворотом на 19°; 2) жилой дом по ул. Горького, 24, с кирпичными стенами, массой 22400 т. Перемещено по прямой вглубь квартала на 49,8 м; 3) административное здание Моссовета, ул. Горького, 31, постройки XVIII века. Стены кирпичные, в плане П-образной формы, массой 20000 т. Перемещено по прямой поперек продольной оси на 13,6 м. В последующем здание было надстроено двумя этажами; 4) глазная больница, ул. Горького, 63. Постройки XVIII века, в плане Ш-образной формы, кирпичное, массой 13300 т. Перемещалось в 2 этапа: с поворотом на 97°16' и по прямой на расстояние 93,5 м и под углом 19°65' к продольной оси.
В послевоенное время также выполнен ряд передвижек зданий: в 1958 г. на Комсомольском проспекте передвинуты 2 пятиэтажных здания на расстояние 63 м; в 1979 г. был передвинут дом № 18 по ул. Тверской. Последние годы здание занимало издательство газеты «Труд». Дом переместили на 33 м, что позволило открыть фасад нового редакционного корпуса газеты «Известия».
Выполнены работы по передвижке памятника А.С. Пушкину, здания Пафнутьев-Боровского монастыря и др.
Технология передвижки здания Моссовета
Здание Моссовета (Мэрии) построено знаменитым русским архитектором М.Ф. Казановым в XVIII в. При расширении ул. Горького потребовалось передвинуть здание вглубь на 14 м. Здание в плане П-образной формы с фасадом длиной 55 м и боковыми фасадами - 27 м. Масса здания составила 20000 т. Большой вес для 4-этажного здания объяснялся использованием массивных кирпичных стен толщиной до 1,5 м и тяжелых многослойных перекрытий.
Одним из условий передвижки выдвигались требования, чтобы полы первого этажа были сохранены, здание должно находиться в рабочем состоянии с доступом посетителей и сотрудников. Здание было перемещено за 4 месяца.
При передвижке здания использовалась традиционная технология. На уровне цокольного этажа выполнена линия среза с последующим устройством обвязочного пояса из прокатного металла, произведена установка путевых элементов, подготовлены основание и пути для перемещения, возведен новый фундамент. Использовалась технология надвижки с применением лебедок. Здание перемещалось по 18 четырехниточным путям на стальных катках. На торцевых элементах ходовых балок было установлено 25 толкающих домкратов, что позволило преодолеть дополнительное сопротивление перемещению за счет местного смятия путей, катков и других элементов.
После сдвижки здания толкающие домкраты отключались и передвижка осуществлялась полиспастами.
Отличительными особенностями производства работ при передвижке этого здания явились необходимость замены стеновой части фундаментов на кирпичную кладку на цементном растворе, большой объем земляных работ, которые выполнялись из-за стесненности вручную, снос некоторых дворовых построек и т.п. Несмотря на это, работы по передвижке были выполнены в установленный срок.
Передвижка жилого дома по ул. Осипенко
Передвижка жилого дома была связана со строительством Краснохолмского моста. Корпус этого дома длиной 88 м оказался в зоне действия нового моста. Было принято решение передвинуть его на 44 м и одновременно развернуть на 19°. Общая масса жилого дома составляла 8500 т. Для расчленения корпусов была демонтирована угловая секция, что предоставило фронт работ для перемещения корпуса здания.
На рис. 12.10 представлены схема положения здания до передвижки и после.
Рис. 12.10. Схема перемещения дома
1 - положение здания до передвижки; 2 - положение здания после передвижки; 3 - разбираемая часть здания; R - радиус поворота
Использовалась традиционная отработанная технология. Перемещение осуществлялось по 4- и 6-ниточным путям, размещаемым на основании отсыпки и сплошного настила из шпал. Посадка здания на пути производилась 200-тонными гидравлическими домкратами с ручным приводом, которые также использовались при установке на новый фундамент. В процессе перемещения домкраты оставались между ходовыми балками. Это позволило их использовать для компенсации осадок.
Здание было с высокой точностью установлено на новые фундаменты, восстановлен подвал и проведены другие сопутствующие работы.
На рис. 12.11 приведена принципиальная схема передвижки здания редакции газеты «Труд» (1979 г.). Проект передвижки выполнен институтом «Моспроект-2», а проект производства работ - трестом Мосоргстрой. Непосредственное выполнение работ осуществлено трестом «Мосфундаментспецстрой».
Рис. 12.11. Схема передвижки здания
1 - новый комплекс редакции газеты «Известия» 2 - положение здания редакции газеты «Труд» до передвижки; 3 - положение здания после передвижки; 4 - встройка, соединяющая здание редакции газеты «Известия» с передвинутым зданием; 5, 6 - разобранные лестничные клетки; 7- толкающие гидродомкраты; 8 - насосная станция; 9 - нивелиры; 10, 11 - стреловые краны для разборки лестничных клеток; 12 - ограждение стройплощадки
Устройство восьми ходовых путей, а также сам процесс передвижки потребовали высокой точности работ. Для этой цели был разработан проект производства геодезических работ, в результате осуществления которого отклонений, превышающих проектные, не отмечено.
Передвижка здания осуществлялась циклично с шагом хода домкратов, равным 1000 см. Здание было перемещено на новый фундамент в течение 28 ч. При этом выполнялись все вспомогательные работы: перестановка упоров, установка вставок, нивелирование катков и др. Средняя скорость движения составила 8 см/мин при протяженности передвижки 34 м.
§ 12.5. Совершенствование технологии передвижки зданий
Проблема передвижки исторически значимых зданий и сооружений остается актуальной и в настоящее время. Экономические расчеты показывают, что в ряде случаев передвижка зданий является более эффективным решением, чем его разборка и утилизация. Актуальность существенно повышается при интенсивном развитии автотранспорта, когда необходимы расширение и прокладка новых магистралей и требуется сохранение зданий, имеющих акцентное значение в городской застройке.
Отечественный и зарубежный опыт показывает, что в целом общие принципы технологии сохраняются. В то же время развитие техники вносит определенные изменения в технологию производства работ.
В первую очередь следует отметить использование рамных конструкций индустриального изготовления взамен ходовых балок. Их оснащение гидравлическими домкратами с дистанционным управлением существенно упрощает передвижку и контроль качества работ. Как правило, платформы снабжаются роликовыми опорами, что является более прогрессивным по сравнению с катками (рис. 12.12).
Рис. 12.12. Рабочий момент передвижки жилого дома (а) с использованием платформ с роликовыми опорами (б)
Колесные платформы могут быть рассчитаны и на движение по поверхности без устройства рельсового основания. Это обстоятельство существенно снижает трудоемкость и металлоемкость процессов.
Расширяется использование гидравлических домкратов не только для подъема зданий, но и их перемещения. Применение новых материалов, например тефлонового покрытия направляющих, позволит отказаться от катучих опор.
Имеется опыт использования пневмоколесных платформ с индивидуальным механическим приводом и управляемой системой поворота. Управление режимом изменения давления в шинах позволяет осуществлять подъем и опускание здания. Применение таких систем исключает трудоемкие и металлоемкие процессы устройства накатных путей и ходовых балок. При этом трасса перемещения объектов выполняется в виде железобетонного основания.
Имеется опыт использования пневмоподушек совместно с гидродомкратами для вывешивания и транспортирования здания. Современные технологии позволяют перемещать здания высотой 8-12 этажей и более.
Метод передвижки зданий нашел свое применение при возведении промышленных объектов и их реконструкции.
Кроме передвижки зданий данный метод используется для перемещения фундаментов и других массивных конструкций.
При реконструкции зданий, представляющих большую архитектурную ценность, и в случае высокой степени износа несущих конструкций возможно перемещение фасадных стен.
На рис. 12.13,б приведены технологические схемы, отражающие основные особенности производства работ.
Рис. 12.13. Технологические схемы передвижки различных конструктивных элементов зданий
а - фундаментов; б - фрагментов фасадных стен: 1 - фундамент стаканного типа; 2 - гидродомкрат; 3 - опорная площадка; 001 - ось нового положения фундамента; а - расстояние перемещения; 4 - вкладыш; 5 - фасадная стена; 6 - рама для обеспечения пространственной жесткости; 7 - роликовая платформа; 9 - лебедка; 10 - новый фундамент; w - ветровая нагрузка; р - масса стены; N - усилие в тросах; Н - высота стены; a, b - геометрические размеры основания роликовой платформы
Определяющим условием при перемещении фрагментов стен фасадов является обеспечение требуемой устойчивости системы от действия динамических нагрузок и ее инерционности, от скорости перемещения, а также влияния различных факторов: эксцентриситетов от невертикальности конструкций, случайных воздействий ветровой нагрузки и т.п. Для обеспечения технологического цикла необходим расчет на устойчивость, деформативность и прочность системы. В общем виде устойчивость системы определяется из соотношений опрокидывающего и удерживающего моментов Wh1 + Pl + Nl2 = Pa.
Эти соотношения позволяют определить основные параметры площадки с катучими опорами и габаритные размеры удерживающей рамы.
Метод передвижки широко используется при реконструкции промышленных предприятий. Одним из примеров является передвижка доменной печи в условиях действующего металлургического комбината. Доменную печь монтируют на специальных стендах на накатных путях. Затем производят передвижку новой печи со стенда на постоянный фундамент и подключают все коммуникации. В целом данный метод обеспечивает сокращение срока реконструкции до 2-3 мес, что весьма важно для предприятий такого типа.
Развитие методов передвижки идет по пути создания управляемых и гибких систем, снижающих удельное давление от массы здания. Известны технологии передвижки с использованием платформ на воздушной или гидравлической подушке. Их применение позволяет в 5-7 раз снизить усилия передвижки и обеспечить более безопасные условия.
На рис. 12.14 приведена технологическая схема перемещения здания на платформе с гидравлическими подушками из гибких полимерных материалов, объединенных с платформой.
Рис. 12.14. Схема перемещения зданий на гидравлических подушках
1 - обвязочный пояс перемещаемого здания; 2 - система с гидравлическими подушками; 3 - платформа; 4 - основание; Р - усилие передвижки
Путем подачи насосами воды обеспечивается подъем здания в рабочее положение. Его применение обеспечивается приложением бокового усилия Р. Движение деформированных под нагрузкой цилиндрических элементов представляет собой процесс перекатывания с минимальным участием сил трения о перемещаемую поверхность.
Преимущества таких технологий состоят в возможности управления системой в целом, снижении трудозатрат на устройство металлических путей, повышении уровня надежности и снижении стоимости работ.
Системы апробированы в Англии и Канаде при перемещении исторического памятника «Виррингтон Академии», резервуара для хранения нефтепродуктов диаметром 45,5 м и массой 500 тыс. т и др.
§ 12.6. Технология вертикального подъема зданий
Длительная эксплуатация зданий приводит к состоянию, когда отметка пола первого этажа находится ниже уровня дневной поверхности. Это обстоятельство связано как с осадкой фундаментов в результате изменения гидрогеологических условий пучения грунтов при их увлажнении и замерзании, так и за счет повышения уровня культурного слоя при выпадении твердых осадков промышленных выбросов, хозяйственной деятельности населения и других причин. По данным статистических исследований, ежегодный поверхностный прирост составляет от нескольких миллиметров до 4-5 см. Интенсивность прироста поверхности слоев зависит также от процессов ветровой эрозии почвы, ремонтно-восстановительных работ дорожных и тротуарных покрытий, когда с периодичностью 5-8 лет наблюдается повышение уровня дневной поверхности на 10-15 см.
В ряде случаев относительное заглубление зданий сопровождается неравномерными осадками его частей, что приводит к образованию кренов и невертикальности.
Перечисленные факторы приводят не только к заглублению зданий, но и нарушению гидроизоляции, что способствует увлажнению и водонасыщению заглубленной части, более интенсивному износу конструктивных элементов, а также резкому снижению комфортности помещений.
Необходимость вертикального подъема зданий диктуется также изменением функций помещений первых этажей, когда требуется увеличение их высоты для размещения технологического оборудования офисов, магазинов и других служб социального назначения.
Наиболее актуальной эта проблема является для зданий старой постройки, имеющих большое архитектурно-историческое значение, а также специальных зданий и сооружений.
Так, в 2004 г. осуществлен подъем железобетонного купола планетария (г. Москва), обеспечивающий увеличение объема здания и его комплексную реконструкцию.
В зависимости от линейных размеров и высоты здания процесс вертикального подъема может осуществляться как для здания в целом, так и его частей путем разрезки на блоки с последующим восстановлением монолитности.
Комплекс работ по вертикальному перемещению зданий включает несколько циклов: подготовительные работы; отделение поднимаемой части путем горизонтальной разрезки вертикальных конструкций; выполнение объемов работ по созданию обвязочных поясов и ниш для размещения гиродомкратов; установка домкратов и комплекта гидросистемы; непосредственно подъем здания; подращивание стен из блоков и др.
Одним из важнейших этапов подготовительных работ является оценка физического состояния подземной и надземной частей. По материалам диагностики определяется необходимость усиления фундаментов, простенков, колонн и других конструктивных элементов. Расчетным путем определяется устойчивость здания и предусматриваются технические решения, обеспечивающие ее стабильность в процессе вертикального перемещения. В объем подготовительных работ входят освоение площадки (размещение временных складских помещений, сетей, ограждений), демонтаж стыковых соединений канализации, водопровода, отключение газовой и электросети, демонтаж перегородок и других несущих конструкций первого этажа.
Основной цикл строительно-монтажных работ включает устройство обвязочного пояса, разрезку вертикальных несущих конструктивных элементов, подготовку мест размещения гидравлических домкратов.
Комплекс перечисленных работ является наиболее трудоемким и требует использования специальных технических средств по разрезке и разборке кирпичной кладки, подведению металлоконструкций обвязочного пояса и его омоноличиванию.
Выполнение работ ведется по захваткам ограниченной длины, исключающей осадку и разрушение опорных частей здания.
Наиболее ответственным этапом основного цикла является установка гидродомкратов и системы гидропривода.
До подъема здания производится контрольная проверка работы системы и оценивается ее эксплуатационная надежность.
На рис. 12.15 приведены технологические схемы вертикального подъема зданий. В качестве объединяющих конструктивных элементов использованы монолитные железобетонные или металлические обетонированные пояса, которые кроме повышения пространственной жесткости основания зданий служат опорами для передачи давления от гидравлических домкратов.
Рис. 12.15. Технологические схемы вертикального подъема зданий с кирпичными стенами при длительной эксплуатации и подъеме уровня дневной поверхности (а) и увеличении высоты первого этажа (б)
УДП1,УДП2 - изменение уровня дневной поверхности за период эксплуатации; Нп - высота подъема; Н2э, Н1э - высота первого этажа до подъема и после; ГД - положение гидравлических домкратов
Установка системы гидродомкратов
Подбор и размещение гидродомкратов производятся по периметру наружных и внутренних несущих стен. Их размещение осуществляется в специальных нишах, образуемых в кладке нижнего пояса, с образованием монолитных железобетонных опорных площадок.
Шаг установки домкратов устанавливается расчетным путем с учетом грузоподъемности и массы здания.
Необходимое количество домкратов определяется с учетом коэффициента запаса, предусматривающего неравномерность нагрузки в начальный период подъема и непредвиденный выход одного из соседних домкратов: N = M×K/P, где М - масса здания; Ртр - техническая грузоподъемность домкратов; К=2 - коэффициент запаса.
Шаг размещения домкратов определяется исходя из периметра и массы несущих конструкций, сосредоточенной и равномерно распределенной нагрузок от этажей здания, приведенных к площади действия домкрата: b = П×m/N, где П - периметр несущих конструкций; т - коэффициент, учитывающий неравномерность распределения нагрузки.
Размещение домкратов должно осуществляться с учетом возможных концентраций нагрузок в угловых элементах здания, а также в местах стыковых соединений внутренних и наружных стен (рис. 12.16).
Рис. 12.16. Технологическая схема подъема здания
а - схема управления работой домкратов; б, в - монтаж блоков; г - циклограмма работы домкратов; ГД - гидравлические домкраты; НС - насосная станция; БУ - многоканальный блок управления; КС - компьютерная система; tп - время подъема; tуст - время монтажа блоков; t0 - сброс давления в системе
При подборе гидравлических домкратов следует согласовать максимальную высоту подъема с шагом хода домкратов. При ходе поршня, превышающем высоту подъема, принимается одноцикличный подъем. При высоте подъема, большей максимального хода поршня, осуществляется многоцикличная технология (рис. 12.16,г).
Для обеспечения равномерного хода домкратов используется насосная станция с системой материальных трубопроводов, многоканальным блоком управления, подключенным к компьютерной системе. Такое решение позволяет управлять технологическим циклом подъема и исключить такие явления, как отклонение стен от вертикали, обеспечивает перераспределение нагрузок на домкраты, учитывает случайные процессы, связанные с непредвиденными деформациями системы.
Подъем здания осуществляется после выполнения всех подготовительных работ и пробного испытания системы. Устанавливается средняя скорость подъема. В процессе вертикального перемещения здания с помощью геодезических приборов контролируются геометрические параметры. В случае отклонения от проектных значений процесс подъема повторяется после ликвидации дефектов.
При достижении проектного уровня подъема осуществляется установка распределительных блоков в пространство между домкратами. Выполнение этого процесса должно производиться с минимальной продолжительностью.
Для выполнения комплекса работ по вертикальному подъему здания разрабатывается проект производства работ. Он предусматривает в своем составе технологические карты на ведение наиболее сложных строительных процессов, обеспечивающих эффективное и безопасное производство работ. Особое внимание уделяется циклу геодезических работ, на которые также требуется разработка ППР. Важное место в производстве работ отводится контролю качества, соблюдению технологических регламентов, подготовке специального оборудования, обучению инженерно-технического персонала и рабочих, предвидению нештатных ситуаций и разработке мер по их ликвидации.
§ 12.7. Технологии исправления крена зданий
Основными причинами возникновения крена зданий являются неравномерные деформации оснований фундаментов, вызванные техногенными процессами, замачиванием грунтов в результате утечки из систем водоснабжения и канализации, ошибками в расчете фундаментов, изменением в структуре грунтов, повышением уровня грунтовых вод и др. Так, замачивание лессовых грунтов в г. Тольятти привело к возникновению недопустимых параметров крена жилых и промышленных зданий в результате просадки свайного основания, что потребовало комплекса восстановительных работ.
Ликвидация крена зданий включает несколько технологических циклов: инструментальную оценку деформаций фундаментов и причины их возникновения; инженерно-геологические исследования состояния грунтов основания; поверочные расчеты несущей способности фундаментов; разработку методов и технологий усиления оснований и фундаментов; разработку проектов производства работ по ликвидации кренов зданий; выполнение подготовительного и основного циклов.
В практике производства работ возможно использование двух методов: 1 - путем опускания недеформированной части фундаментов под действием собственной массы здания; 2 - подъем деформированной части гидродомкратами на проектную отметку.
Цикл подготовительных работ включает: ограждение площадки; выделение мест складирования материалов и конструкций; временных дорог для перемещения средств механизации; отключение сетей водоснабжения, канализации и электроснабжения. Для повышения пространственной жесткости здания осуществляют закладку проемов первых 2-3 этажей, усиление несущих конструкций и др. работы.
Основные виды работ включают: укрепление грунтов в просадочной части известными методами, усиление фундаментов путем устройства свай по разрядно-импульсной или струйной технологии .
Наиболее ответственными и трудоемкими этапами производства работ являются создание обвязочного пояса по линии среза контура здания и внутренним несущим стенам, разрезка стен фундаментной или цокольной части с помощью гибких цепных систем. Выполнение строительных процессов ведется по захваткам с обеспечением мероприятий по технике безопасности с постоянным геодезическим контролем. На наиболее сложные процессы разрабатываются технологические карты с непременным условием инструментального контроля качества работ.
Для создания рабочих зон выполняется цикл работ по отрывке приямков по периметру здания, укрепление откосов и др. виды работ.
Основной этап непосредственно связан с подъемом или опусканием здания с использованием системы гидравлических домкратов. Для их размещения устраиваются специальные ниши. Число домкратов определяется исходя из массы здания и коэффициента запаса, учитывающего непредвиденный выход из строя одного или двух соседних.
Система домкратов перед установкой в рабочее положение апробируется, устанавливаются и ликвидируются возможные дефекты в дистанционном управлении, проверяется работа датчиков давления, высоты подъема, синхронности работы и т.п.
Подъем деформированной части здания осуществляется при цикличной работе домкратов. По мере подъема на величину хода штока в нишах устанавливаются опорные элементы в виде металлических стаканов, которые рассчитываются на восприятие нагрузки частей перемещаемого здания. При дальнейшем подъеме металлические стаканы наращиваются (рис. 12.17).
Рис. 12.17. Технологическая схема ликвидации крена зданий путем вертикального подъема просадочной части
1 - обвязочный пояс из металлического профиля; 2 - линия среза; 3 - ниши и проемы для установки гидродомкратов (4) и опорных элементов (5); 6 - омоноличивание опорных элементов и ниш
Окончанием технологического процесса подъема являются геодезическая оценка вертикальности стен здания и последующая передача нагрузки на опорные элементы.
После демонтажа системы домкратов производится омоноличивание участков с использованием подвижных бетонных смесей и легких опалубочных систем.
Процесс восстановления вертикальности здания считается законченным после выполнения комплекса работ и сдачи приемной комиссии. При выполнении подготовительного и основного циклов работ все технологические процессы и методы их производства регистрируются в журнале работ. При демонтаже части фундаментных стен, устройстве ниш, обвязочных поясов, элементов усиления и др. составляются акты на скрытые работы с инструментальной оценкой качества работ и физико-механических характеристик. Особое внимание уделяется оценке степени набора прочности бетоном, состояния элементов для размещения домкратов, отвечающих требованиям, устанавливаемым в проекте производства работ и технологических картах.
Основные технологические процессы ликвидации крена методом опускания включают усиление фундаментов или основания просадочной части здания, устройство обвязочной системы над линией среза, проемов и ниш для размещения домкратов, установку временных подвижных опорных элементов, демонтаж части плоскости фундаментной стены, непосредственно опускание объекта (рис. 12.18).
Рис. 12.18. Технологическая схема ликвидации крена путем снижения уровня стеновых несущих конструкций
а - общая схема здания на период усиления фундаментов; б, в - механизм опускания; 1 - сваи усиления фундаментов; 2 - обвязочный пояс по линии среза; 3 - ниши для размещения гидродомкратов (4) и опорных стоек (5) с вкладышами (6); 7 - толщина демонтируемой части фундамента (переменна)
Использование специальных опорных элементов с возможностью синхронного и плавного изменения высоты позволяет осуществить цикл опускания за достаточно короткие сроки. Вертикальность здания достигается за счет перемещения части здания под действием собственной массы, что существенно снижает энерго- и трудозатраты на ликвидацию крена.
Для малоэтажных зданий в качестве временных опорных элементов могут использоваться мешки с сухим песком, а процесс вертикального перемещения осуществляется путем устройства в них отверстий, что способствует интенсивной утечке и падению опорного уровня до проектной отметки.
Дата добавления: 2016-03-22; просмотров: 871;