И ПЛАЗМЕННОЙ СВАРКИ 3 страница
Недостаток трансформатора - вибрация подвижной части пакета.
Трансформаторы с нормальным магнитным рассеянием и совмещенной реактивной обмоткой (СТН, ТСД)
Несколько различное конструктивное исполнение источников не меняет общей идеи их работы (рисунок 69).
Рисунок 69 – Конструкция сердечников и расположение
обмоток трансформаторов СТН(а) и ТСД (б)
Здесь в отличие от СТЭ есть и электрическая и магнитная связь дросселя и собственно трансформатора. Зазор регулируется двигателем.
В режиме холостого хода поток создаваемый первичными обмотками распределяется между средним ярмом СЯ и верхним ярмом ВЯ согласно их магнитным проводимостям. Вторичные обмотки и обмотки дросселя намотаны в одну сторону) т.е. напряжение холостого хода Uо можно несколько менять изменяя зазор (зазор уменьшается Uо увеличивается, зазор увеличивается Uо уменьшается). Это, конечно, имеет смысл только при малых зазорах.
В режиме нагрузки есть вторичный ток, создающий поток, который совместно с потоком первичной обмотки создает результирующий поток.
Ток нагрузки, протекая по дросселю создает поток, направленный против результирующего потока, создает в дросселе ЭДС самоиндукции.
С увеличением тока нагрузки ЭДС самоиндукции также возрастает и понижается выходное напряжение трансформатора.
Трансформаторы с повышенным магнитным рассеянием
Конструктивно можно создать трансформатор с искусственно увеличенными полями рассеяния. Для этого необходимо несколько разнести обмотки друг от друга и от сердечника (рисунок 70).
1-первичная обмотка, 2-вторичная обмотка, 3-сердечник
Рисунок 70 – Магнитная схема трансформатора с
увеличенным рассеянием
В них кроме основного потока трансформатора Фт, замыкающегося по сердечнику, каждая из обмоток создает поля рассеяния –лобовые Флб, окна Фок и ярма Фяр.
Эти трансформаторы делятся на две основные группы:
- трансформаторы с подвижными обмотками;
- трансформаторы с магнитными шунтами (с подвижными шунтами и подмагничиваемыми шунтами).
Трансформаторы с подвижными обмотками
ТС (ТСК) и ТД
Катушки обмоток этих трансформаторов расположены несколько иначе, чем у силовых. Для ступенчатой регулировки обмотки разделены на две части, а для получения увеличенного рассеяния разнесены.
Первичная обмотка обычно неподвижна, вторичная - подвижная с помощью ходового винта).
У силового трансформатора обмотки предельно сближены и поток рассеяния - минимален, характеристика жесткая. У сварочных трансформаторов рассеяние принудительно увеличено, характеристика падающая. На рисунке 71 показан трансформатор с подвижными обмотками.
подаче напряжения сети на первичную обмотку в ней появляется ток холостого хода, возникает магнитный поток Ф полн., часть которого замыкается по сердечнику Фт (основной поток), а часть по воздуху Ф1р .
Рисунок 71–Трансформатор с подвижными обмотками
При На холостом ходу в обмотках основной магнитный поток создает ЭДС в первичной и вторичной обмотках, пропорциональную числу витков и скорости изменения магнитного потока .
Кроме этого в первичной обмотке (так как в ней есть ток) создается ЭДС рассеяния, но так как сила этого тока мала то и ЭДС рассеяния небольшая.
Есть такое понятие коэффициент магнитной связи:
Км=Ф2/Фполн.
где Ф2 - поток пронизывающий II обмотку, Ф полн. - суммарный магнитный поток. Км зависит от расстояния между обмотками – если обмотки расположены близко друг к другу, то Км →1. Напряжение холостого хода при изменении расстояния между обмотками меняется незначительно, примерно на 3-5%
В рабочем режиме во вторичной обмотке появляется ток и появляются новые магнитные потоки, замыкающиеся по сердечнику и по воздуху. С возрастанием тока нагрузки потоки рассеяния всех обмоток увеличиваются, что приводит к снижению выходного напряжения и получению падающей характеристики.
Недостатки трансформаторов с подвижными обмотками:
1) Необходимость и трудность надежного закрепления обмоток (подвижных), из-за вибрации, шума и износа.
2) Низкая надежность механизма перемещения и достаточно значительная масса его.
3) Высокие потери энергии на потоки рассеяния в элементах трансформатора.
Трансформаторы с магнитными шунтами
Трансформаторы с увеличенным магнитным рассеянием и подвижными магнитными шунтами выполняются на магнитопроводах стержневого типа и имеют дисковые обмотки.
Обмотки трансформатора (рисунок 72) расположены симметрично на двух стержнях магнитопровода 3. В канале между первичными 1 и вторичными 2 обмотками установлен магнитный шунт 4. Между шунтом и стержнями магнитопровода имеются воздушные зазоры δ.
Возможны два варианта взаимного расположения первичной и вторичной обмоток относительно шунта, а именно полное или частичное разнесение. При полном разнесении первичные и вторичные обмотки расположены по разные стороны шунта. При частичном разнесении вторичная обмотка состоит из двух секций — основной и дополнительной, причем дополнительная обмотка размещена в зоне первичной обмотки и имеет с ней хорошую электромагнитную связь.
Рисунок 72–Конструктивная схема трансформатора
с подвижным шунтом
Наличие магнитного шунта (при его введении в сердечник) увеличивает потоки рассеяния обмоток Ф1р и Ф2р и, следовательно, снижается выходное напряжение. Плавное движение шунта приводит к получению семейства выходных характеристик с разной степенью крутизны.
Недостатки таких систем аналогичны предыдущим моделям источников и связаны с наличием подвижных ферромагнитных элементов в переменном магнитном поле.
Сопротивлением магнитного шунта прохождению магнитного потока можно управлять также путем его (шунта) подмагничивания. Так были созданы трансформаторы с увеличенным магнитным рассеянием и подмагничиваемыми шунтами.
трансформаторы с увеличенным магнитным рассеянием и подмагничиваемыми шунтами
Конструктивно эти источники отличаются от трансформаторов с подвижными шунтами тем, что шунт неподвижен, а изменение потоков рассеяния обмоток осуществляется изменением магнитной проницаемости сердечника шунта путем его подмагничивания постоянным током (рисунок 73).
Трансформаторы имеют стержневой магнитопровод 3, неподвижный магнитный шунт, имеющий тоже сердечник стержневого типа 4 и обмотки подмагничивания 5. Первичные и вторичные обмотки разделены на две части, однако вторичная обмотка еще разделена на секции, расположенные по разные стороны магнитного шунта (2а, 2б и 2в). Секция 2а расположена рядом с первичной обмоткой и имеет жесткую характеристику, обмотки, расположенные по другую сторону шунта имеют увеличенное рассеяние, которое можно регулировать изменением магнитной проводимости материала сердечника шунта.
Наличие секционирования обмоток и обмоток с нормальным и увеличенным рассеянием позволяет получить различные виды внешних вольт-амперных характеристик.
Рисунок 73– Трансформатор с подмагничиваемым шунтом:
а- конструктивное исполнение, б- электрическая схема
ТРАНСФОРМАТОРЫ С РЕАКТИВНОЙ ОБМОТКОЙ
Имеют стержневой сердечник (3), секционированные первичную(1), вторичную (2) и реактивную (4) обмотки (рисунок 74).
Рисунок 74– Конструктивная (а) и принципиальная электрическая схема (б) трансформатора с реактивной обмоткой
Простота и низкая стоимость источников этого типа предполагает их работу в монтажных условиях, но им присущ недостаток - узкий диапазон регулирования выходных параметров.
Потоки рассеяния замыкаются не только по лобовым поверхностям и в окне магнитопровода, но и по воздуху между верхним и нижним ярмами (ярмовое регулирование).
Реактивная обмотка сцеплена с потоками ярмового рассеяния, а также имеется возможность ее согласного, встречного включения или полого отключения ее для увеличения и уменьшения сварочного тока соответственно (три диапазона ступенчатой регулировки (рисунок б) позволяют делать это).
РЕЗОНАНСНЫЕ ИСТОЧНИКИ ПИТАНИЯ
Эти источники питания переменного тока созданы относительно недавно и выгодно зарекомендовали себя для небольших потребляемых токов.
Высокие технологические свойства резонансных сварочных источников определяются в основном избирательными свойствами вторичного контура, нагруженного на дуговой промежуток. Устойчивость горения дуги при использовании трансформатора с индуктивностью и емкостью (рисунок 75) высокая, поскольку повторное зажигание происходит при совместном питании дуги от трансформатора и емкости. Практически это означает, что при ручной дуговой сварке в случае использования достаточной емкости напряжение холостого хода можно снизить примерно до 40 В без опасности снижения устойчивости горения дуги. Снижение напряжения холостого хода приводит к увеличению коэффициента трансформации и пропорциональному снижению первичного тока.
Рисунок 75– Схема резонансного источника
Применение резонансного контура во вторичной цепи обеспечивает практически синусоидальную форму кривой сварочного тока.
Сварочное оборудование данного класса обладает следующими преимуществами:
высокий уровень электробезопасности, связанный с применением специальных схемных решений, ограничивающих напряжение холостого хода до значения не более 38 В (в изделиях, выполненных по специальным требованиям,— не более 12 В);
высокий коэффициент полезного действия (до 80%);
получение коэффициента мощности не менее 0,95 достаточно простой настройкой резонансного контура;
минимальный уровень помех, генерируемый в сеть и окружающее пространство, по сравнению со всеми известными образцами сварочного оборудования;
уменьшение при коротком замыкании в сварочном контуре тока потребления из сети в 1,5—2 раза (в известных типах сварочных аппаратов он обычно возрастает в 2—2,5 раза);
отсутствие пиков зажигания в кривой тока, что позволяет снизить концентрацию диффузионного водорода в шве и тем самым улучшить его прочностные свойства.
Разработан и применяются в настоящее время большой класс трансформаторов с магнитным регулированием, в которых изменение выходных параметров осуществляется за счет изменения магнитных характеристик сердечников подмагничиванием. При этом очень существенно искажается форма кривой переменного тока, что негативно сказывается как на параметрах процесса сварки так и на энергетических характеристиках оборудования.
Тиристорные трансформаторы с фазовым регулированием имеют хорошие энергетические характеристики, высокую гибкость регулирования, небольшие массу и габариты за счет конструктивного нормального магнитного рассеяния. Могут иметь системы стабилизации параметров.
Включение трансформаторов на ПОСЛЕДОВАТЕЛЬНУЮ
И параллельную работу
Трансформаторы могут включаться на последовательную и параллельную работу для достижения необходимых параметров по выходному напряжению или силе тока.
Включение на последовательную работу возникает при необходимости увеличения выходного напряжения для сварочного процесса. Необходимо учитывать при этом, что неправильное подсоединение в этом случае неопасно и приведет лишь к снижению (а не к увеличению) выходного напряжения. Сила выходного тока при таком соединении определяется наименее мощным трансформатором.
Параллельное включение применяется для увеличения выходного тока системы трансформаторов. Однако, параллельно можно включать только одинаковые трансформаторы и на одной ступени. Опасна неправильная фазировка выходных обмоток.
10.2 Источники питания постоянным током
Сварочные генераторы
Генераторы независимого возбуждения
Схема генератора показана на рисунке 76.
Рисунок 76– Схема преобразователя с генератором
независимого возбуждения
Генератор входит в состав сварочного преобразователя.
Обмотка независимого возбуждения Wв питается от электрической сети через феррорезонансный стабилизатор напряжения СН и вентильный блок V с регулировкой тока реостатом Rв и создает основной намагничивающий поток Фв. Обмотка Wр, включенная последовательно в сварочную цепь, создает поток Фр, направленный встречно потоку Фн. Чем больше ток нагрузки генератора, тем больше величина размагничивающего потока Фр, тем меньше величина суммарного магнитного потока генератора, тем меньше ЭДС, наводимая в цепи якоря генератора. Размагничивающая обмотка имеет ответвление от части витков. К этой точке подсоединяется сварочная цепь при работе на больших токах.
Генераторы с самовозбуждением
Генераторы с самовозбуждением обычно входят в состав агрегатов, т.к.не требуют стационарной электрической сети.
Питание обмотки возбуждения осуществляется от выходных цепей генератора, но не от всей якорной обмотки, а лишь от ее части, для чего ставится дополнительная щетка для стабильной работы генератора и постоянства тока возбуждения. Если в генераторах независимого возбуждения возможна стабилизация тока возбуждения за счет стабилизации напряжения ее питания, то в генераторах с самовозбуждением с падающей внешней характеристикой напряжение питания обмотки возбуждения будет зависеть и от тока нагрузки. Но есть возможность снизить эту зависимость путем рационального подключения обмотки возбуждения к якорной цепи.
В состав современных агрегатов входят не коллекторные генераторы с самовозбуждением, а так называемые вентильные бесколлекторные генераторы, более надежные и экономичные в работе.
Вентильные генераторы
В вентильных генераторах (рисунок 77) используются генератор переменного тока и выпрямительный блок.
Рисунок 77- Схема вентильного генератора (ГД-312)
Генератор имеет обмотку возбуждения и 2 группы обмоток якоря ОС1 и ОС11, соединенных треугольниками Δ1 и Δ2. Группа ОС11 подсоединяется при работе на больших токах выключателем S.
В отличии от коллекторных генераторов обмотка возбуждения «ОВ» также как и рабочая «ОС1» (обмотка якоря) находится на неподвижном статоре. Ротор – зубчатый, выполнен из штампованных пластин, на нем обмоток нет. По обмотке возбуждения с выхода генератора идет постоянный ток, однако создаваемый ею магнитный поток, пересекающий витки рабочей обмотки - переменный.
Когда зуб ротора находится под обмотками Ф=max, т.к. магнитное сопротивление на его пути минимальное; при удалении зуба ротора от обмоток связь между ними ослабевает и ЭДС в обмотке якоря снижается. Генератор имеет три секции обмоток якоря, расположенных таким образом, что индуктируемые в них ЭДС сдвинуты относительно друг друга на 120 электрических градусов.
Сварочные выпрямители
Сварочные выпрямители - статические преобразователи переменного тока в постоянный.
По сравнению с трансформаторами выпрямители обеспечивают надежное зажигание дуги, стабилизацию параметров сварки, имеют высокий КПД, небольшие потери холостого хода, высокие динамические свойства, отсутствие вращающихся частей, равномерность загрузки фаз.
К недостаткам выпрямителей можно отнести возможность выхода из строя полупроводниковых вентилей при перегрузке, особенно при отсутствии соответствующих систем защиты и обратных связей по току, а также чувствительность к колебаниям сетевого напряжения.
Функциональная схема выпрямителя представлена на рисунке 78 .
Рисунок 78– Блок схема выпрямителя
Сетевое напряжение после понижения трансформатором Т поступает на регулятор тока РТ (или регулятор напряжения РН), где формируется определенный вид внешней характеристики (падающая или жесткая), затем выпрямляется выпрямителем В и через дроссель L (необходимый для снижения скорости нарастания тока при коротких замыканиях) подается на сварочную дугу.
Выпрямительный блок выполнен на полупроводниковых вентилях (диодах) - элементах с одним р-n переходом. Наибольшее применение нашли кремниевые диоды. Применяются и германиевые, у них КПД выше (меньше внутреннее падение напряжения), но более низкие рабочие температура и обратное напряжение.
Кремний - элемент IV группы. Доноры - элементы V группы - мышьяк, сурьма, фосфор. Акцепторы - элементы III группы - галлий, алюминий. Доноры - отдают электроны - электронная проводимость (n). Акцепторы - забирают электроны - дырочная проводимость (p).
В n-области % электронов во много раз больше, чем в p-области и они диффундируют в p-области и создают объемный заряд (отрицательный). Дырки наоборот. Образуется потенциальный барьер равновесия.
Если приложить положительный потенциал к р - области, а отрицательный - к n, то внешнее поле снижает потенциальный барьер и в цепи течет ток. Приложение обратного напряжения не приводит к появлению тока.
Вольт-амперная характеристика диода представлена на рисунке 79.
Рисунок 79- Вольт-амперная характеристика диода
Падение напряжение на вентиле Uпр зависит от материала полупроводника и обычно составляет от долей вольта до единиц вольт. Прямой ток Iпр ограничивается возможностью работы без перегрева и при принудительном охлаждении (воздушном или водяном) может достигать тысяч ампер. В обратном направлении диод может выдержать без разрушения (электрического пробоя) достаточно высокое напряжение, но при значительном превышении допустимого значения диод безвозвратно выходит из строя. Если сделать элемент с 4 зонами p-n-p-n (если 3, то это транзистор), то получим полупроводниковый управляемый вентиль - тиристор.
Особенностью тиристора является то, что моментом его открытия (и закрытия) можно управлять, подавая электрические сигналы на управляющий электрод, регулируя, таким образом, напряжение и силу тока на нагрузке. Соединение нескольких тиристоров в одном корпусе позволило получить полупроводниковые приборы - симисторы, еще более упростившие управление источниками.
При применении неуправляемых вентилей регулирование параметров режима осуществляется трансформатором выпрямителя методами, изложенными в разделе «трансформаторы». Это простое решение, не требующее дорогой электроники, и форма выходного напряжения практически не искажается.
Выпрямители на управляемых вентилях наиболее энергетически выгодные источники.
В этих источниках заложен принцип импульсно-фазового управления и в сочетании с применением обратных связей по току и напряжению источники обеспечивают практически любой вид внешней вольт-амперной характеристики. Появляется возможность дистанционного управления, в том числе и современными ультразвуковыми, инфракрасными и радиочастотными методами.
Применение в таких выпрямителях трансформаторов с нормальным рассеянием – также большое преимущество этих источников. Высокие КПД и коэффициент мощности этих источников (до 0,98) позволяют эффективно применять их в сварочном производстве.
Сварочные выпрямители в настоящее время получили отличного конкурента в виде инверторных источников и подробно здесь не рассматриваются.
10.3 Инверторные источники питания
Один из современных принципов энергопитания сварочных постов - двойное преобразование электрической энергии: переменный ток промышленной частоты в постоянный, постоянный ток в переменный высокой частоты, ток высокой частоты в постоянный (рисунок 80).
В –выпрямитель, П- преобразователь
Рисунок 80 –Блок-схема инверторного источника
Преимущества инверторных источников:
1) уменьшенные габариты и масса (т.к. увеличивается частота);
2) гибкость регулирования;
3) уменьшение пульсаций выходного напряжения.
Преобразователь может быть выполнен на транзисторах или тиристорах. Схема преобразователя на транзисторах представлена на рисунке 81.
Рисунок 81–Схема транзисторного инвертора
Напряжение электрической сети выпрямляется выпрямителем V1, сглаживается фильтром L1-С1 и через управляемые электронные элементы VT1 и VT2(транзисторы) подается на первичную обмотку трансформатора Т. Транзисторы работают поочередно и по первичной обмотке трансформатора протекает переменный ток. Скорость переключения транзисторов определяет частоту преобразования. Высокочастотное (1-60 кГц) напряжение, снимаемое со вторичной обмотки, выпрямляется выпрямителем V2, сглаживается фильтром L2-С2 и подается в нагрузку.
Современная промышленность предлагает широкую гамму инверторных источников для сварки, отличающихся электрическими параметрами, дизайном, эргономикой, надежностью, ценами. Могут применяться для одного способа сварки или быть универсальными. Например, универсальный импульсный сварочный аппарат инверторного типа АДИ-HDD-315.3 ИП (рисунок 82), предназначен для сварки низкоуглеродистых и легированных сталей, нержавеющих сталей, алюминия, титановых сплавов, медных и других цветных металлов и сплавов.
В нем используется ВЧ инверторная технология мягкого переключения. Аппарат обладает соответствующими для данного типа сварочных аппаратов высокими качественными характеристиками, применяется для дуговой сварки неплавящимся электродом в среде инертного газа (аргон) и ручной дуговой сварки. Обладает рациональными статическими и стабильными динамическими характеристиками.
Аппарат АДИ-HDD-315.3 ИП, может широко применяться при выполнении ремонтно-монтажных работ на промышленных предприятиях, стройках, фермах, в автохозяйствах, гаражных кооперативах и пр.
Рисунок 82 –Общий вид инвертора АДИ
Основные свойства и преимущества аппарата АДИ-HDD-315.3 ИП:
Компактные габаритные размеры и небольшая масса.
Обеспечивает 4 различных формы волны на выходе: стандартная прямоугольная, нестандартная прямоугольная, квадратная, треугольная, гармоническая.
Все параметры настроек выведены кнопками на переднюю панель.
Имеет 4 режима работы: 2-шаговый, 4-шаговый, точечная сварка, повтор. Способность сохранять до 30 установленных режимов сварки с параметрами. Быстрый поджиг дуги и идеальные сварочные параметры при пониженных шумах.
10.4 Многопостовые сварочные системы
Применяются для одновременного питания нескольких сварочных постов от одного источника (рисунок 83). Системы достаточно сложны т.к. должны обеспечивать оптимальные технологические режимы сварки на всех постов с учетом влияния постов друг на друга. Экспериментальные расходы на такие системы ниже чем на однопостовые. Однако в системах достаточно высокие потери электроэнергии в балластных реостатах (50 - 70 % от энергии, потребляемой постом).
В настоящее время в основном в многопостовых системах используются выпрямители (ВКСМ, ВДМ, ВДУМ, ВДУ).
Рисунок 83– Сварочный пост с многопостовым источником питания и получение падающей характеристики источника на посту
Характеристика источника - жесткая, падающие - создаются за счет применения балластных реостатов. Балластный реостат представляет собой мощный ступенчато регулируемый активный резистор (рисунок 84). Он включается последовательно в сварочную цепь. Регулирование силы тока производится с помощью выключателей S1 ……S6.
Рисунок 84– Принципиальная схема балластного реостата
типа РБ-301
Основной недостаток балластных реостатов – невысокий КПД, вследствие потерь энергии в нем как на обычном активном резисторе (Например: при номинальном рабочем напряжении реостата 30 В и силе тока 315А на нем рассеивается мощность более 9 кВт).
Количество сварочных постов, запитываемых от многопостового источника, зависит от характеристик балластных реостатов. Так, от источника с номинальным током 1000А, можно запитать 6 постов с реостатами на 315А, или 9 постов с реостатами на 200А. Здесь учитывается коэффициент загрузки сварочных постов, который равен 0,6.
Потери энергии можно резко снизить, используя специально разработанные тиристорные регуляторы сварочного тока (например, ТРСТ-315, Iн = 315А для многопостовых источников). Эти регуляторы обеспечивают сварку покрытыми электродами постоянным и модулированным током с регулируемой скважностью импульсов без разрыва цепи, сварку в углекислом газе с технологической оптимизацией параметров процесса в функции от скорости подачи сварочной проволоки, автономность питания устройства (подключается как обычный балластный реостат), снижение напряжения холостого хода в паузах сварки, защиту источника от коротких замыканий и перегрузок.
Размещение источников питания сварочных постов в зависимости от характера выполняемых работ может быть централизованным (групповым) и индивидуальным. Групповое размещение сварочного оборудования в отдельных помещениях делают на расстоянии 30 — 40 м от сварочного поста. Источники питания устанавливают на минимальном расстоянии от рабочего места электросварщика.
При больших объемах сварочных работ рационально использовать многопостовые сварочные выпрямители, преобразователи или трансформаторы. Величину сварочного тока при этом регулируют на каждом рабочем посту балластными реостатами (при использовании постоянного тока) и дросселями (при использовании переменного тока). Передвижные сварочные посты, как правило, применяются при монтаже и ремонтных работах. При этом часто используют переносные сварочные трансформаторы, сварочные агрегаты и выпрямители, устанавливаемые на специальные прицепы или закрытые автомобили. Такие прицепы и автомобили оборудованы специальными рубильниками, к которым подключены установки. При работе на различной высоте электроды и необходимый инструмент сварщика находятся в брезентовых сумках, подвешиваемых к поясу сварщика, либо в специальных пеналах или ящиках. Для обеспечения удобства и безопасности работы делают подмости с перилами (инвентарные леса) или подвешивают люльки. При работе на высоте и значительном удалении от источника питания применяют дистанционные регуляторы сварочного тока. А при сварке в сосудах закрытого типа для обеспечения безопасных условий труда используют ограничители холостого хода.
Современная промышленность предлагает для оснащения сварочного поста следующие аксессуары, облегчающие процесс сварки и обеспечивающие безопасность процесса:
- возбудители-стабилизаторы дуги, например: ВСД-02;
- блок управления сварочным процессом, БУСП-ТИГ;
- блок снижения напряжения холостого хода, БСН-10 АС\DC
- термопеналы и пеналы-термосы, ТП-8/130; ПТ-8;
- электропечи для прокалки электродов ЭПЭ-10\400;
- блок измерительный, БИ-1.
В настоящее время промышленностью выпускаются многоцелевые передвижные посты для ручной дуговой сварки (например, пост ручной сварки ПРС-202.
Общие сведения.
Универсальный источник тока "ПРС-202" (рисунок 85), обеспечивающий сварку углеродистых сталей штучными электродами диаметром 2-4 мм на постоянном токе, а также аргоно-дуговую сварку неплавящимся вольфрамовым электродом на постоянном токе углеродистых и нержавеющих сталей, титана и медных сплавов, зарядки аккумуляторных батарей напряжением 12 В током до 30 А с десульфатацией пластин, запуск двигателя автомобиля с питанием бортовой сети 12 В и 24 В в холодное время года при слабо заряженной аккумуляторной батарее.
Рисунок 85 – Общий вид поста ПРС-202 Основные узлы поста Источник тока -1 шт. Блок коммутационный -1 шт. Горелка сварочная -1 шт. Электрододержатель-1 шт. Комплект жгутов и кабелей -1 шт. |
Технические характеристики:
Номинальное напряжение сети переменного тока | 220 В |
Сварочный ток при ПВ=100% | 100 А |
Сварочный ток при ПВ=20% | 200 А |
Напряжение холостого хода источника | 50 В |
Потребляемая мощность | 10 кВт |
Габариты | 540х470х650мм |
Масса | 70 кг |
10.5 Вспомогательные устройства источников питания
Дата добавления: 2016-03-10; просмотров: 973;