Характеристика выборочного наблюдения

 

Выборочное наблюдение представляет собой один из методов не сплошного наблюдения, характеризуется тем, что отобранная в случайном порядке часть единиц дает представление о всей изучаемой совокупности по какому-либо признаку.

При проведении выборочного наблюдения необходимо обеспечить случайность выборки и её репрезентативность (представительность).

Принцип случайности означает, что все единицы совокупности должны иметь равные шансы попасть в выборку.

Для обеспечения принципа репрезентативности необходимо, чтобы выборка была достаточной. В этом случае ошибка выборки не превысит допустимые размеры.

Преимущества выборочного наблюдения:

1. Экономия времени, материальных и денежных ресурсов.

2. Возможность проведения там, где невозможно проведение сплошного наблюдения (например, при проверке качества продукции, связанного с её уничтожением – вскрытие консервов, проверка лампочек).

Недостатки выборочного наблюдения:

- возникновение ошибок выборки.

Совокупность, из которой осуществляется выборка, называется генеральной. Отобранная часть представляет выборочную совокупность или выборку.

Ошибками выборки называются расхождения между характеристиками генеральной и выборочной совокупностей. Причина появления ошибок выборки – отличие структуры выборки от структуры генеральной совокупности.

Для определения и обозначения основных характеристик генеральной и выборочной совокупностей используют следующие условные обозначения (табл.15):

Таблица 15

Условные обозначения основных характеристик

генеральной и выборочной совокупностей

Показатели Генеральная совокупность Выборочная совокупность
Численность выборки
Среднее значение признака
Общая дисперсия
Межгрупповая дисперсия
Доля единиц, обладающих признаком
Доля единиц, не обладающих признаком
Частота

 

Ошибки выборки

Различают два вида ошибок выборки:

- стандартная или средняя;

- предельная

Под средней ошибкой выборки понимают такое расхождение между средней генеральной совокупности и средней выборочной совокупности, которое не превышает (среднего квадратического отклонения).

Предельной ошибкой выборки считают максимально возможное расхождение между средней генеральной и средней выборочной совокупности при заданной вероятности её появления.

В основе определения ошибок выборки лежит закон нормального распределения. Формула средней ошибки выборки зависит от метода (способа) проведения выборочного наблюдения (собственно случайный отбор, серийный , механический отбор),объема выборки и вариации признака.

Для собственно случайного повторного отбора стандартная или средняя ошибка выборки определяется по формуле:

,

где n – численность выборки.

Для собственно случайного бесповторного отбора ошибка выборки определяется по формуле: .

Организовать собственно случайный повторный отбор сложнее собственно случайного бесповторного отбора, т.к. рассчитывать ошибку легче по формуле случайного повторного отбора, а организовывать выборку удобнее как случайную бесповторную, тона практике используют случайный бесповторный отбор, а ошибку выборки рассчитывают как при повторном отборе, несколько завышая её величину.

где t – коэффициент доверия, который определяется по таблице нормального распределения.

Предельная ошибка выборки используется при определении доверительного интервала, который выглядит так:

.

Чем выше вероятность, с которой гарантируется попадание в доверительный интервал, тем больше величина доверительного интервала.

Наряду с абсолютной величиной рассчитывается относительная величина ошибки выборки,которая в общем случае определяется по формуле .Для альтернативного признакаошибки определяется по следующим формулам:

,

.

В статистике доказано, что общая величина дисперсии генеральной совокупности связана с дисперсией выборки следующим соотношением: .

При большом объеме выборки ( ) стремится к 1 и , поэтому среднюю ошибку выборки можно рассчитывать на основании выборочной дисперсии по формуле

Пример 7.1

При проверке веса импортируемого груза на таможню методом случайной повторной выборки было отобрано 200 изделий. В результате был установлен средний вес изделия 30 г при среднем квадратическом отклонении 4г. С вероятностью 99,7% определить доверительный интервал в котором находится средний вес изделия всего импортируемого груза.

Решение:σ=4, V=200 , , .

Определим интервал, в котором находится средний вес по всему грузу:

Ответ: с вероятностью 99,7% можно гарантировать, что вес изделия импортируемого груза будет находиться в интервале от 29,16 г. до 30,84 г.

 








Дата добавления: 2016-03-05; просмотров: 1835;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.008 сек.