Математическое моделирование деятельности оператора: модели задачи

 

Многие из моделей, перечисленные в табл. 8.1. и прежде всего модели первого вида (модели задачи) строятся на использовании структурного подхода. Под ним в общем случае понимается описание (с помощью определенной системы символов и правил их комби­наций) взаимосвязей между различными сторонами (элементами) изучаемого явления. В общей психологии разработан ряд моделей для структурного описания восприятия, памяти, принятия решения, процессов коммуникации и т. п. [92]. Широкое применение струк­турный подход находит и в инженерной психологии. В основе его лежит представление деятельности опе­ратора в виде определенной последовательности вы­полняемых действий. На этой основе базируется, на­пример, обобщенный структурный метод определения надежности оператора, к числу структурных относят­ся и многие из расчетных методов определения време­ни решения задачи оператором, на базе структурного подхода осуществляется алгоритмическое описание и анализ деятельности оператора, разрабатываются структурно-алгоритмические, сетевые и автоматные модели деятельности оператора. Дадим им краткую характеристику.

Применение в инженерной психологии теории автоматов и построение на ее основе моделей деятель­ности оператора основано на представлении ее как процесса функционирования конечного цифрового (дискретного) автомата [83, 174]. Под ним понимается математическая модель различного рода систем, кото­рые принимают, хранят и перерабатывают в дискрет­ном времени дискретную информацию. Такую модель можно применять, если деятельность оператора пред­ставляет собой дискретный стохастический процесс, состоящий из отдельных управляющих воздействий, формируемых на основании поступающей на сенсор­ные входы человека информации. Поэтому автоматные модели являются удобным средством представления и описания деятельности управляющего типа. Из абст­рактной теории автоматов известно, что процесс вы­полнения алгоритма (в данном случае — деятельности оператора) математически может быть представлен композицией двух абстрактных автоматов: управляю­щего и операционного (рис. 8.3).

Операционный автомат A2 непосредственно осу­ществляет необходимые преобразования, а управляю­щий автомат А1 управляет этими процессами в соот­ветствии с заложенной программой, исходными данными Н0 и случайными внутренними N1 (напри­мер, ошибки оператора) и внешними N2 факторами, оказывающими влияние на временные, точностные и надежностные характеристики деятельности. Такой подход полностью соответствует общекиберяетической модели деятельности.

 

Рис. 8.3. Композиционная автоматная (а) и общекибернетическая (б) модели деятельности оператора.

 

Деятельность оператора как процесс функциони­рования дискретного абстрактного автомата может быть представлена следующим образом. Афферентный (от лат. afferens — приносящий)поток дискретной ин­формации х (считывание показаний приборов, воспри­ятие команд и т. п.), поступающий на вход оператора, переводит его как некоторую управляющую систему из состояния y(t) в состояние y(t+1). Результатом тако­го преобразования является дискретный стохастичес­кий поток эфферентности (от лат. efferens — вынося­щий) информации z (нажатие кнопки, установка переключателей, доклад и т. д.); при этом система пе­реходит в новое состояние. Данный процесс цикли­чески повторяется при переходе СЧМ из исходного состояния Н0 в требуемое Нk, то есть реализуется фун­кция управления

(8.3)

где D — совокупная деятельность, которую нужно со­вершить в системе для перевода ее из состояния Н0 в состояние Hk.

Автоматное представление деятельности оператора предполагает ее ярко выраженный дискретный характер. Это приводит к важному заключению о принципиальной допустимости декомпозиции математичес­кого описания деятельности оператора. Декомпозиция операционного автомата позволяет перейти от решения задачи отображения (8.3) в общем виде к описанию отдельных подавтоматов, характеризующих элементар­ные действия оператора, что значительно проще. При этом используются промежуточные результаты преоб­разований Hi-1––––––––>Hi.

Зная входные сигналы автомата в целом или его отдельных подавтоматов и их функции переходов, мож­но описать их реакции (действия оператора). В простей­ших случаях автоматные модели строятся на основе детерминированных абстрактных автоматов, в более сложных случаях — на основе вероятностных автома­тов, функционирование которых в каждом такте рабо­ты описывается вероятностными законами.

Автоматные модели деятельности оператора об­ладают рядом достоинств, среди которых следует от­метить возможность в равной степени описания как машинного, так и человеческого звена в системе «че­ловек-машина», простоту построения модели, возмож­ность ее сопряжения с моделями других типов. В то же время этим моделям присущ и ряд недостатков: описание деятельности с позиций бихевиоризма (от лат. behavior — поведение), т. е. в основе модели лежит простейшая поведенческая формула «стимул-ре­акция», поэтому она не может претендовать на пол­ную адекватность описания реальной деятельности, поскольку в ней выпадает ее существенный компо­нент, связанный с высшей нервной деятельностью человека, его сознанием и мышлением. Поэтому применение автоматных моделей ограничено лишь теми видами деятельности управляющего типа, имеющими жестко алгоритмический характер. Возможности мо­дели могут быть расширены путем применения веро­ятностных моделей и имитационного моделирования с помощью ЭВМ.

На базе структурного подхода может быть постро­ена целая группа моделей, условно называемых сете­выми. В основу их построения положены те или иные виды сетей. Наиболее полно разработаны модели, в основу которых положены традиционные методы се­тевого планирования и управления (СПУ). Для построения сетевой модели деятельность оператора разбива­ется на ряд отдельных действий, имеющих вполне определенный смысл, например, нажатие кнопки, включение тумблера, движение руки к органу управ­ления, перемещение взгляда, опознание характерис­тики объекта и т. п. На языке сетевых моделей эти действия называются работами, а моменты их завер­шения — событиями. Каждая работа в конечном итоге должна быть охарактеризована двумя параметрами — математическим ожиданием и дисперсией продолжи­тельности (времени выполнения) работы. Общее время решения задачи оператором равно продолжительности критического пути. В таком виде модель используется для априорной оценки времени решения задачи опе­ратором, а также для описания и оптимизации группо­вой деятельности операторов [27, 61]. Основным дос­тоинством сетевой модели является возможность учета последовательно-параллельного характера выполнения отдельных действий оператором (группой операторов). Остальные достоинства и недостатки такие же, как у автоматных моделей.

Принципиально новым подходом в теории и прак­тике сетевых методов являются функциональные сети [137]. Они представляют собой языково-алгебраическую систему для описания поведения логико-динамических объектов дискретного типа любой природы, в том числе и деятельности оператора. Функциональные сети являются обобщением аппарата алгоритмических, автоматных, традиционных сетевых методов; они при­меняются для построения математических моделей, позволяющих получать вероятностные и ресурсные (в том числе и временные) характеристики деятельности оператора.

Применение функциональных сетей позволяет перейти от ретроспективных индуктивно-эмпиричес­ких методов к более прогностичным дедуктивно-фор­мальным методам исследования, отражающим как специфические свойства отдельных элементов (и че­ловека, и машины), так и их системную результативность и устойчивость функционирования.

Еще одной разновидностью сетевых моделей является описание различных управляющих действий че­ловека (более широко — его поступков) с помощью фреймов. Фрейм (от лат. frame — рама, скелет) — это иерархически упорядоченная структура данных, кото­рая является минимально необходимой для задания стереотипных ситуаций или данного класса объектов. В инженерной психологии аппарат фреймов использу­ется для описания и анализа ошибочных действий оператора [78].

Для построения сетевых моделей деятельности опе­ратора может быть использован также математический аппарат сетей Петри [27, 138]. Сеть Петри представля­ет математическую модель дискретных систем с парал­лельно функционирующими и асинхронно взаимодей­ствующими компонентами. Предложены немецким ученым К. Петри в начале 60-х гг. Графически сети Петри (рис.8.4) представляют собой двухдольный ори­ентированный мультиграф с вершинами двух типов: переходами (моделирующими события в дискретной системе) и позициями (моделирующими предусловия выполнения события и постусловия, возникающие пос­ле события). Позиции графически обозначаются кру­жочками, переходы — черточками (рис. 8.4). Направлен­ное ребро может связывать только позицию и переход. Кроме того, задается начальная разметка позиций: каж­дой из них сопоставляется одно из чисел 0, 1, 2... (число маркеров или фишек). Этим числом моделируется не­которая емкость позиций, количество ресурсов в ней. По отношению к переходам позиции могут быть входными или

Рис. 8.4. Графическое изображение сети Петри.

 

выходными. Некоторый переход t называет­ся возбужденным или разрешенным (и может срабо­тать), если число фишек его входной позиции р не меньше числа ребер, ведущих из р в t. Срабатывание возбужденного перехода заключается в удалении из каждой его входной позиции р числа фишек, равного числу ребер, ведущих из р в t, и добавлении в каждую его выходную позицию q числа фишек, равного числу ребер, ведущих из t в q. В результате срабатывания перехода получается новая разметка сети Петри. Два возбужденных перехода с общими позициями не долж­ны срабатывать одновременно [166].

С помощью сетей Петри моделируются не времен­ные, а причинно-следственные связи. Они широко при­меняются для моделирования различных систем. В ин­женерной психологии их используют для описания, проектирования и исследования деятельности операто­ра (группы операторов), определения показателей ка­чества деятельности, расчета надежности системы «че­ловек-машина». Например, в работе [138] сети Петри использованы для моделирования групповой деятельно­сти операторов алгоритмических СЧМ. Для этого с каж­дым переходом сети, соответствующим действиям опе­ратора, связываются соответствующие этому действию математическое ожидание и дисперсия времени, а так­же вероятность его безошибочного выполнения, а с каждой позицией — вероятность передачи управления, от одного действия к другому. Эти характеристики за­даются с учетом сложности и структуры пультов управ­ления операторов, воздействий факторов внешней сре­ды, наличия напряженности в деятельности операторов, вызванной дефицитом времени на выполнение алгорит­ма. Для определения характеристик деятельности опе­ратора сеть представляется в виде формульной записи. В дальнейшем осуществляется последовательное сокра­щение этой записи путем применения к каждой из операций формулы соответствующих ей соотношений, которые используются в аналитических методах оцен­ки вероятностных характеристик алгоритмов при эле­ментарных преобразованиях, упрощающих граф, пред­ставляющий алгоритм.

Собственно моделирование групповой деятельно­сти осуществляется следующим образом. По словесному описанию алгоритма групповой деятельности (инст­рукции по эксплуатации) строится сеть Петри, отобра­жающая этот алгоритм. Для этого используется систе­ма переходов от вершин параллельной граф-схемы алгоритма к фрагментам сети Петри. На основе ана­лиза особенностей групповой деятельности (наличие операций приема и выдачи команд) сделан вывод о це­лесообразности расширения системы переходов путем введения двух дополнительных вершин типа «прием команды» и «выдача команды», что позволяет упрос­тить процедуру алгоритма построения сети и процеду­ру его анализа на корректность. В таком виде сеть Петри применяется для априорной оценки групповой деятельности по критериям математического ожидания и дисперсии времени выполнения алгоритма группой, вероятности его своевременного и безошибочного выполнения [138].

На базе структурного подхода строятся также ал­горитмические и структурные модели. Алгоритмичес­кие модели характеризуются использованием алгорит­мического языка, впервые примененного в инженерной психологии Г.М. Зараковским [52]. Модели этого клас­са в принципе могут использоваться для описания любой целостной деятельности, имеющей дискретный характер. Важнейшими ограничениями для примене­ния этих моделей служат отсутствие в них операций синтеза и нестохастический характер используемых в них алгоритмов. По этой причине алгоритмические модели имеют в основном лишь дискурсивное (от лат. discursis — рассуждение), т. е. формальное, не допус­кающее расчета применение к сложной целостной деятельности. Однако для отдельных видов деятельно­сти, для которых удается построить алгоритм, введены и нормативные дополнения [цит. по 178]. В этом слу­чае они используются для определения показателей сложности и стереотипности деятельности оператора. Особенно продуктивным применение этих моделей оказывается при использовании нормированных пока­зателей [10].

Структурные модели отображают деятельность оператора с точки зрения ее надежности и эффективности. В определенной мере эти модели представля­ют собой обобщение алгоритмических для совокупно­сти режимов работы, выполняемых оператором задач, алгоритмов их решения, блоков (составляющих алго­ритмы) и конкретных сенсорных, моторных и логи­ческих операций. Существенным отличием структур­ных моделей от алгоритмических является разработка «типовых блоков» с известными (в общем виде) веро­ятностными и временными характеристиками. Из таких блоков как из «кирпичиков» можно синтезиро­вать структуры сложной деятельности и рассчитывать ее вероятностные и надежностные характеристики. В дальнейшем этот метод трансформировался в фун­кционально-структурную теорию СЧМ, в основе ко­торой лежат рассмотренные ранее функциональные сети [137].

В ряде случаев модели деятельности оператора могут строится на базе математического аппарата те­ории множеств. Под ней понимается раздел математи­ки, исследующий общее свойство множеств. Множе­ством называется любое объединение в одно целое некоторых определенных и различных между собой объектов нашего восприятия или мысли [166]. Теоре­тико-множественные модели в инженерной психоло­гии предложены К-С. Козловым для описания процес­са информационного поиска оператором, описания процессов обучения; на их основе разработаны элемен­ты семантической теории информации [7QJ. CJL Бори­сов использовал теоретико-множественную модель для оценки степени неупорядоченности оперативного поля пультов управления [10].

Дальнейшим развитием теоретико-множественно­го подхода в инженерной психологии является приме­нение размытых (нечетких) множеств, понятие о кото­рых введено Л. Заде [цит. по 173]. Такой подход основан на том, что ключевые элементы в человеческом мыш­лении являются классами объектов, в которых переход от принадлежности к одному классу и непринадлеж­ности к нему составляет непрерывный континуум, и. что логика причинно-следственной связи в человечес­ком мышлении отличается от формальной логики и подчиняется многозначной логике. Класс, который допускает возможность частичного членства, называ­ется размытым, или нечетким, множеством. Такое мно­жество объектов задается с помощью функции при­надлежности, принимающей численные значения в диапазоне [0—1] в соответствии со степенью принад­лежности объекта к данному множеству. Размытое множество характеризуется функцией принадлежнос­ти μа: u ––––––>0,1, описывающей каждый элемент

u ϵ U некоторым числом μа (u) из интервала [0—1].

Нечеткое множество наиболее адекватно описы­вают процессы оперативного мышления оператора, поэтому они являются хорошей моделью для описания процессов принятия решения [27, 195], они находят применение для описания явлений неопределенности, с которой часто сталкиваются при решении различного рода инженерно-психологических задач [184]. Инте­ресна попытка применения Г. Г. Маньшиным аппарата нечетких множеств для проведения инженерно-психо­логической оценки СЧМ [173].

 








Дата добавления: 2016-03-05; просмотров: 1019;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.009 сек.