Дискретные распределения.
Биномиальное распределение.( Распределение Бернулли) Предположим, что производятся независимые испытания и при каждом испытании может быть два исхода — успех с вероятностью р или неудача с вероятностью q (р + q = 1). Например, стрельба по цели (при каждом выстреле два исхода — попадание или непопадание); проверка наугад выбранного изделия, которое может оказаться качественным или бракованным; подбрасывание симметричной монеты (при каждом подбрасывании появится герб или решка). Термины «успех» и «неудача» употребляются для удобства, важно только, чтобы при каждом испытании было два исхода.
Предположим, что произведено п испытаний, пусть x — число успехов при п испытаниях.
Данная случайная величина принимает значения от 0 до n .
P(ξ=m)=Pn(m)=Cnmpmqn-m.
Согласно биному Ньютона:
(p+q)n= Cn0pnq0+ Cn1pn-1q1+…=
= = =
Если k=i-1
= =np
Найдем наибольшее значение для биноминального распределения.
k>np-q – число меньше единицы
P(ξ=k+1)<P(ξ=k)
k>np-q – число больше единицы
P(ξ=k+1)>P(ξ=k)
K=np-q –тут может быть дробным числом . тогда в [k] максимум.
Если k целое число. То у нас два максимума.
Другой способ вычисления Px и Mx.
= ; ;
Геометрическое распределение .
Приводиться ряд экспериментов. Где может быть успех или неуспех.
ξ—кол-во Неуспехов до первого успеха
P(ξ=m)=qmp
Данная формула имеет свойство отсутвия посследствия P(ξ=m+n/ ξ>=n)= P(ξ=m)
P(ξ=m+n/ ξ>=n)= P(ξ=m)=
Распределение Пуассона.
Пусть события одно за другим с интенсивностью λ к моменту времени t1 t2.Причем интенсивность не зависит от τ(его величины и местоположения)—простейший однородный стационарный поток относительно λ.
Случайная величина ξ кол-во событий за время τ.
Для подсчета разделим процесс τ на n- частей так,чтобы промежутки , и за это время могло произойти или не произойти событие.Вероятность поступления одного события за время равно тогда
P(ξ=m)=
При следующие пределы равны:
P(ξ=m)=
=a – среднее кол-во событий за время τ.
P(ξ=m)=
А – параметр распределения Пуассона
=1;
;
Математическое ожидание равно дисперсии.
Гипергеометрическое распределение.
Имеется N объектов. Среди них m обладают свойством «1» , а N-m обладают свойством «2». для исследования взято l объектов .
ξ – кол-во объектов обладающих свойством «1» среди l, взятых на исследование
P(ξ=k) =
Дата добавления: 2016-02-27; просмотров: 471;