Способы последовательной передачи
Последовательная передача данных может осуществляться в асинхронном или синхронном режимах.
При асинхронной передаче каждому байту предшествует старт-бит, сигнализирующий приемнику о начале посылки, за которым следуют биты данных и, возможно, бит паритета (четности,). Завершает посылку стоп-бит, гарантирующий паузу между посылками (рисунок 4.7). Старт-бит следующего байта посылается в любой момент после стоп-бита, то есть между передачами возможны паузы произвольной длительности. Старт-бит, имеющий всегда строго определенное значение (логический 0), обеспечивает простой механизм синхронизации приемника по сигналу от передатчика. Подразумевается, что приемник и передатчик работают на одной скорости обмена. Внутренний генератор синхронизации приемника использует счетчик-делитель опорной частоты, обнуляемый в момент приема начала старт-бита. Этот счетчик генерирует внутренние стробы, по которым приемник фиксирует последующие принимаемые биты. В идеале стробы располагаются в середине битовых интервалов, что позволяет принимать данные и при незначительном рассогласовании скоростей приемника и передатчика. Очевидно, что при передаче 8 бит данных, одного контрольного и одного стоп-бита предельно допустимое рассогласование скоростей, при котором данные будут распознаны верно, не может превышать 5%. Чем меньше коэффициент деления опорной частоты внутреннего генератора (чем выше частота передачи), тем больше погрешность привязки стробов к середине битового интервала, и требования к согласованности частот становятся более строгими. Чем выше частота передачи, тем больше влияние искажений фронтов на фазу принимаемого сигнала. Взаимодействие этих факторов приводит к повышению требований к согласованности частот приемника и передатчика с ростом частоты обмена.
Формат асинхронной посылки позволяет выявлять возможные ошибки передачи:
▪ Если принят перепад, сигнализирующий о начале посылки, а по стробу старт-бита зафиксирован уровень логической единицы, старт-бит считается ложным и приемник снова переходит в состояние ожидания. Об этой ошибке приемник может и не сообщать.
▪ Если во время, отведенное под стоп-бит, обнаружен уровень логического нуля, фиксируется ошибка стоп-бита.
▪ Если применяется контроль четности, то после посылки бит данных передается контрольный бит. Этот бит дополняет количество единичных бит данных до четного или нечетного в зависимости от принятого соглашения. Прием байта с неверным значением контрольного бита приводит к фиксации ошибки.
Контроль формата позволяет обнаруживать обрыв линии: при этом принимаются логический нуль, который сначала трактуется как старт-бит, и нулевые биты данных, потом срабатывает контроль стоп-бита.
Для асинхронного режима принят ряд стандартных скоростей обмена: 50, 75, 110, 150, 300, 600, 1200, 2400, 4800,
Асинхронный обмен в PC реализуется с помощью СОМ-порта с использованием протокола RS-232C.
Синхронный режим передачи предполагает постоянную активность канала связи. Посылка начинается с синхробайта, за которым сразу же следует поток информационных бит. Если у передатчика нет данных для передачи, он заполняет паузу непрерывной посылкой байтов синхронизации. Очевидно, что при передаче больших массивов данных накладные расходы на синхронизацию в данном режиме будут ниже, чем в асинхронном. Однако в синхронном режиме необходима внешняя синхронизация приемника с передатчиком, поскольку даже малое отклонение частот приведет к искажению принимаемых данных. Внешняя синхронизация возможна либо с помощью отдельной линии для передачи сигнала синхронизации, либо с использованием самосинхронизирующего кодирования данных, при котором на стороне приемника из принятого сигнала могут быть выделены импульсы синхронизации. В любом случае синхронный режим требует дорогих линий связи или оконечного оборудования. Для ПК существуют специальные платы — адаптеры SDLC поддерживающие синхронный режим обмена. Они используются в основном для связи с большими машинами (mainframes) IBM и мало распространены. Из синхронных адаптеров в настоящее время применяются адаптеры интерфейса V.35.
На физическом уровне последовательный интерфейс имеет различные реализации, различающиеся способом передачи электрических сигналов. Существует ряд родственных международных стандартов: RS-232C, RS-422A и RS-485. На рисунке 4.8 приведены схемы соединения приемников и передатчиков, а таблице 4.1 показаны ограничения на длину линии (L) и максимальную скорость передачи данных (V).
Несимметричные линии интерфейсов RS-232C имеют самую низкую защищенность от синфазной помехи. Лучшие параметры имеет двухточечный интерфейс RS-422A и его магистральный (шинный) аналог RS-485, работающие на симметричных линиях связи. В них для передачи каждого сигнала используются дифференциальные сигналы с отдельной (витой) парой проводов.
В перечисленных стандартах сигнал представляется потенциалом. Существуют последовательные интерфейсы, где информативен ток, протекающий по общей цепи передатчик-приемник — «токовая петля». Для связи на короткие расстояния приняты стандарты беспроводной инфракрасной связи.
Наибольшее распространение в ПК получил простейший из перечисленных — стандарт RS-232C, реализуемый СОМ-портами. В промышленной автоматике широко применяется RS-485, а также RS-422A, встречающийся и в некоторых принтерах.
Таблица 4.1 – Параметры интерфейсов
Интерфейс | Расстояние передачи | Скорость передачи |
RS – 232C | L = 15 м | V = 20 Кбит/с |
RS 423A | L = 9 м L = 91 м L = 1200 м | V = 100 Кбит/с V = 10 Кбит/с V = 1 Кбит/с |
RS – 422A | L = 12 м L = 120 м L = 1200 м | V = 10 Мбит/с V = 1 Мбит/с V = 100 Кбит/с |
RS – 485 | L = 12 м L = 120 м L = 1200 м | V = 10 Мбит/с V = 1 Мбит/с V = 100 Кбит/с |
Дата добавления: 2016-02-24; просмотров: 1353;