Неустановившееся истечение жидкости из резервуаров.

Истечение из резервуара произвольной формы с постоянным притоком. Резервуары являются наиболее распространёнными хранилищами различных жидкостей. К наиболее существенным технологическим операциям с резервуарами относятся операции заполне­ния резервуаров и операции опорожнения. Если операция заполнения никаких существен­ных проблем перед гидравликой не ставит, то опорожнение резервуара может рассматри­ваться как прямая гидравлическая задача.

Пусть, в самом общем случае, имеем резервуар произвольной формы (площадь гори­зонтального сечения резервуара является некоторой функцией его высоты). В резервуар поступает жидкость с постоянным расходом Q0. Задача сводится к нахождению времени

необходимого для того, чтобы уровень жидкости в резервуаре изменился с высоты взлива до . Отметим, что площадь горизонтального сечения резервуара несоизмеримо вели­ка по сравнению с площадью живого сечения вытекающей струи жидкости, т. е величиной скоростного напора в резервуаре можно пренебречь (уровень жидкости в резервуаре ме­няется с весьма малой скоростью).

Величина расхода при истечении жидкости яв­ляется переменной и зависит от напора, т.е. текущей высоты взлива жидкости в резервуаре Уровень жидкости в резервуаре будет подниматься, если и снижаться когда , при притоке

уровень жидкости в резервуаре будет посто­янным. Поскольку движение жидкости при истечении из отверстия является неустановившемся, решение поставленной задачи осуществляется методом смены стационарных состояний. Зафикси­руем уровень жидкости в резервуаре на отметке . Этому уровню будет соответствовать расход жидкости при истечении из отверстия:

За бесконечно малый интервал времени из резервуара вытечет объём жидкости рав­ный:

За этот же интервал времени в резервуар поступит объём жидкости равный:

Тогда объём жидкости в резервуаре изменится на величину :

Выразив величину притока жидкости в резервуар Qo подобно расходу Q, получим:

Тогда время, за которое уровень жидкости изменится на величину dH :

Для дальнейшего решения резервуар следует разбить на бесконечно тонкие слои, для которых можно считать, что площадь сечения резервуара в пределах слоя постоянна.

Тем не менее, практического значения задача (в общем виде) не имеет. Чаще всего требуется искать время полного опорожнения резервуара правильной геометрической формы: вертикальный цилиндрический резервуар (призматический), горизонтальный ци­линдрический, сферический.

Истечение жидкости из вертикального ци­линдрического резервуара. Вертикальный цилин­дрический резервуар площадью поперечного се­чения S заполнен жидкостью до уровня Н. Приток жидкости в резервуар отсутствует. Тогда диффе­ренциальное уравнение истечения жидкости будет иметь вид:

i

Для начала определим время необходимое для перемещения уровня жидкости с от­метки до

Когда = Н а = 0, то время полного опорожнения резервуара составит:

Таким образом, время полного опорожнения резервуара в два раза больше, чем вре­мя истечения этого же объёма жидкости при постоянном напоре равном максимальному напору Я.

Истечение жидкости из горизонтального цилиндрического резервуара. В отличие от вертикального резервуара, площадь сечения свободной поверхности и горизонтального сечения резервуара - величина переменная и зависит от уровня жидкости в резервуаре.

Время полного опорожнения резервуара:

или, обозначив: D = 2 получим:

Переток жидкости между резервуарами при переменных уровнях жидкости. Если два резервуара соединены между собой, то при разных уровнях жидкости в этих ре­зервуарах будет происходить переток жидкости из резервуара с более высоким положени­ем уровня свободной поверхности в резервуар, где эта поверхность будет расположена на более низкой отметке. Переток будет осуществляться при переменном (убывающем) рас­ходе и продолжаться до тех пор, пока уровни жидкости в обоих резервуарах не сравняют­ся.

Рассмотрим два резервуара А и В, соединённые между собой трубопроводом с площадью сечения s. Питающий резервуар А имеет более высокий уровень жидкости

С - С' относительно плоско­сти сравнения О - О, который равен , площадь сечения ре­зервуара А равна . Приём­ный резервуар В имеет более низкий уровень жидкости D - D', который относительно плоскости сравнения равен z2, площадь сечения этого резер­вуара - . Переток жидкости

обеспечивается переменным действующим напором равным Н = . Поскольку оба

этих уровня меняются во времени,, то и действующий напор Я тоже будет переменным.

Пусть начальный действующий напор будет равен , а действующий на-

пор на конец интересующего нас периода будет равным (в общем случае он может быть не равен 0). Тогда за время dt из резервуара А в резервуар В при некотором напоре Я через соединительный трубопровод перетечёт объём жидкости равный:

?

где: - коэффициент расхода системы, т.е. соединительного трубопровода.

При этом в резервуаре А уровень жидкости понизится на величину , а в резервуа­ре В, наоборот, повысится на величину . При этом действующий напор также изменится на величину:

Изменения уровней жидкости в резервуарах будут связаны между собой:

?

Тогда:

•>

откуда:

Поскольку площадь сечения резервуара постоянная, то необходимо лишь выразить через действующий напор Н.

, тогда: , откуда:

Окончательно:

> или:

В том случае, когда уровни в резервуарах сравняются :








Дата добавления: 2016-02-20; просмотров: 666;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.013 сек.