Второй закон термодинамики и невозможность создания вечного двигателя второго рода
Согласно первому закону термодинамики, могут протекать только такие процессы, при которых полная энергия системы остается постоянной. Например, превращение тепловой энергии полностью в механическую не связано с нарушением первого закона термодинамики, но тем не менее оно невозможно. Второй закон термодинамики еще больше ограничивает возможности процессов превращения.
Второй закон термодинамики утверждает, что не может быть создан вечный двигатель второго рода, который бы производил работу за счет тепла окружающей среды, без каких-либо изменений в окружающих телах. То есть в природе не может быть процессов, единственным результатом которых было бы превращение теплоты в работу. Этот закон утверждает, что во всех явлениях природы теплота сама переходит от более нагретых тел к менее нагретым. Если система замкнута и невозможны никакие ее самопроизвольные превращения, то энтропия достигает максимума. Состояние с наибольшей энтропией соответствует статическому равновесию. Энтропия является мерой вероятности осуществления данного термодинамического состояния или мерой отклонения системы от статического равновесия.
Второй закон термодинамики можно сформулировать как закон, согласно которому энтропия теплоизолированной системы будет увеличиваться при необратимых процессах или оставаться постоянной, если процессы обратимы. Это положение касается только изолированных систем.
Второй закон термодинамики говорит о том, что в замкнутой системе при отсутствии каких-либо процессов не может сама по себе возникнуть разность температур, т.е. теплота не может самопроизвольно перейти от более холодных частей к более горячим.
Согласно второму закону термодинамики, любые замкнутые системы должны перейти в более вероятное состояние, характеризуемое термодинамическим равновесием с наименьшей свободной энергией и с наибольшей величиной энтропии. Поэтому явление спонтанного (самопроизвольного) перехода вещества из симметричного состояния в асимметричное, сопровождаемое повышением упорядоченности и энергетического уровня системы и понижением ее энтропии, кажется просто нереальным. Однако трудности термодинамического характера в вопросе происхождения жизни до сих пор не определены. Решения пока нет.
Существует точка зрения, что второй закон термодинамики не применим к живым системам, так как они не являются замкнутыми системами. Живые системы — это открытые системы. Энтропия живых молекул весьма низка и имеет тенденцию к понижению. Этот факт сегодня является общепризнанным, а ее асимметрия не есть состояние нарушения равновесия, отсутствия структурности или беспорядка, а есть состояние динамического равновесия и упорядоченности, более сложной структурности и более высокого энергетического уровня. Это то самое крайне маловероятное состояние, которое заставляет усомниться в абсолютности знания. Возрастание энтропии и говорит о необходимости поиска новой физической теории или биологической закономерности, описывающей это состояние.
Дата добавления: 2016-02-20; просмотров: 792;