ИНФОРМАЦИОННАЯ ЭЛЕКТРОНИКА
Разработка информационных средств производилась структурами, для которых промышленные устройства были побочным продуктом, основные лежали в оборонной сфере. Это затрудняет восстановление исторических данных о творцах новой техники в этой сфере и местах их деятельности.
Поэтому представляется целесообразным выделить группу наиболее фундаментальных идей и способов преобразования информации, получивших всеобщее широкое признание, и проследить развитие средств для реализации этих идей.
Электронные средства обработки информации нашли наибольший спрос и развивались наиболее интенсивно в технике связи, вычислительной технике, автоматике и управлении. Областью применения и сферой человеческой деятельности, которая стимулировала развитие информационной техники и поставляла как заказы, так и средства их выполнения, стала оборонная промышленность.
О темпах развития электронных средств в информационной электронике говорят такие даты: первый транзистор появился в 1948 г.; с 1951 г. стало интенсивно развиваться производство электронных вычислительных машин на электронных лампах (их принято называть первым поколением ЭВМ), а с 1960 г. – ЭВМ второго поколения на транзисторах; в 1964 г. появляется новое – третье поколение ЭВМ на малых
и средних интегральных схемах; с некоторой условностью можно говорить о следующем – четвертом поколении ЭВМ, выполненном на больших интегральных схемах – БИС (1970 г.).
По‑настоящему революционный сдвиг в схемотехнической микроэлектронике произошел в 1971 г., когда фирмой «Intel» был создан микропроцессор – большая интегральная схема, где на одном кристалле – чипе (от английского chip) методами интегральной технологии созданы все основные части ЭВМ: процессор, запоминающее устройство, порты ввода и вывода. Первый микропроцессор обрабатывал 4‑разрядные двоичные слова и мог использоваться для программируемых (гибко перестраиваемых пользователем) устройств автоматизации. Степень интеграции быстро нарастает, в 1980 г. сверхбольшие интегральные схемы (СБИС) насчитывают до 3 млн. транзисторов на одном чипе – многослойном кристалле кремния.
В развитии промышленных средств будем опираться на общеизвестные классификации информационных устройств по видам сигналов (аналоговые, цифровые) и так называемым поколениям средств электроники и микроэлектроники. Следует отдавать себе отчет, что информационное направление промышленной электроники представляет лишь одну ветвь современных информационных средств.
Перечень устройств, которые исторически входили в сферу промышленных применений, включает:
аналоговые устройства: усилители низкой частоты, фазочувствительные ламповые и транзисторные схемы; аналоговые стабилизаторы напряжения и тока; схемы управления командо‑аппаратами, реле, приводами исполнительных устройств;
ламповые и транзисторные импульсные и ключевые устройства;
аналогово‑цифровые и цифроаналоговые преобразователи (АЦП и ЦАП);
средства отображения информации индивидуального и группового пользования;
средства управления и регулирования: аналоговые и цифровые регуляторы; логические управляющие устройства; цифровые автоматы; централизованные системы управления и контроля; автоматизированные системы управления;
управляющие ЭВМ; микропроцессоры и микропроцессорные средства управления;
промышленные микроконтроллеры; средства программирования, отладки, эмуляции, обучения персонала; системы автоматизированного проектирования средств автоматизации.
Последними на настоящий момент этапами развития микропроцессорных средств управления можно считать цифровую обработку сигналов в реальном времени с помощью цифровых сигнальных процессоров, использование экспертных оценок и принципов самообучения в управлении процессами. Одним из примеров применения нестрогих понятий для построения систем автоматического регулирования служит создание регуляторов на основе нечеткой логики. Элементная и аппаратная основа современных управляющих систем сделала огромный шаг навстречу потребителю – пользователю, заказчику.
11.4.1. ЭТАПЫ РАЗВИТИЯ
Информационная электроника представляет собой совокупность аппаратных средств и алгоритмов (способов обработки и преобразования информации), выполняющих функции сбора, обработки, хранения, отображения информации и ее использования в задачах управления промышленными объектами и устройствами. За очень короткое (исторически) время функции информационных устройств промышленной электроники расширились и усложнились, элементная база претерпела изменения, которые принято характеризовать числом сменившихся поколений электронных приборов. Изменились конструкция и технологии изготовления, вклад средств электроники в технико‑экономические показатели оборудования. С целью систематизации объектов описания и изучения предлагается хронологически‑объектный подход: зарождение и первые шаги информационной электроники; первые применения в энергетике и машиностроении; направления развития информационной электроники.
Несмотря на многообразие функций, выполняемых информационной электроникой, она основана на ограниченном наборе фундаментальных технических идей. Значительная их часть известна с начала столетия, они используются в различных областях техники, упоминание о них можно найти в различных частях настоящей книги. Реализация этих идей в промышленных технических средствах преобразования информации существенно зависела от состояния и уровня технологии. В области информационной электроники наиболее распространенные преобразования информации включают:
усиление электрических сигналов;
сканирование, развертывающее преобразование сигнала;
обратную связь, построение замкнутых систем;
дискретизацию (квантование) сигнала по времени и уровню.
Более новые способы, получившие развитие в середине века:
аппаратное преобразование Фурье, в том числе быстрое преобразование Фурье;
цифровая фильтрация сигналов.
11.4.2. УСИЛИТЕЛИ ЭЛЕКТРИЧЕСКИХ СИГНАЛОВ
Первые шаги в применении информационных устройств в промышленности связаны с усилением слабых электрических сигналов. Исторически первым применением усиления стала передача сигналов по радио. Воспринятые слабые сигналы нуждались в усилении для того, чтобы они могли производить необходимый эффект – звуковой (усилители радиоприемников), электротехнический (радиоуправляемые устройства). Электронные устройства в промышленности нашли применение в двух сферах: измерительной (получение информации о состоянии объекта) и исполнительной (осуществление энергетического воздействия). Вторая сфера предполагает возможность применения в автоматических (без участия человека) устройствах управления, поэтому требует более высокой надежности. Неслучайно первые электронные средства играют роль осведомителей или советчиков, оставляя решение за человеком (оператором). Усилительные устройства оказались весьма полезными в связи с необходимостью получения электрических сигналов о значениях неэлектрических величин и их унификации. Основным стимулятором создания электронных промышленных приборов послужило развитие электро‑ и теплоэнергетики. С появлением первых электрических и тепловых сетей возникла необходимость централизованного контроля и регулирования расхода рабочего вещества (топлива и теплоносителя), уровня жидкости, температуры и других параметров веществ, участвующих в технологическом процессе. С развитием химической, пищевой, легкой и других отраслей промышленности, естественно, расширялся список параметров, подлежащих контролю. К нему добавились вязкость, оптические свойства, химический состав веществ и т.п. Однако наиболее многочисленными стали приборы для измерения, регистрации и регулирования температуры с термопарами и терморезисторами.
Структура всех средств содержит измерительный преобразователь (датчик) первичной информации, преобразующий измеряемую величину в электрический сигнал; электронный узел усиления и преобразования электрического сигнала; электромеханическое устройство регистрации и (или) исполнительный механизм для энергетического воздействия на контролируемый параметр.
Рис. 11.11. Автоматический компенсатор постоянного тока, запись на бумажной ленте шириной 275 мм (1960 г.)
Усилители на электронных лампах характеризовались значительным разбросом параметров и нестабильностью во времени коэффициента усиления. Поэтому широкое распространение получили методы устранения влияния усилителя на качество работы прибора и системы в целом:
применение компенсационных методов измерения;
применение отрицательных обратных связей в усилителях.
Получившие широкое распространение электронные автоматические мосты и потенциометры преобразовывали измеряемую величину в перемещение движка потенциометра и связанное с ним перемещение стрелки показывающего прибора (рис. 11.11). Перемещение прекращалось, когда снимаемое с потенциометра напряжение полностью компенсировало входной сигнал. Электронный усилитель, на вход которого поступает разность измеряемого входного и компенсирующего сигналов, выполняет роль нуль‑органа; к нему не предъявляется жестких требований стабильности, линейности в широком диапазоне измеряемых значений, поскольку в установившемся режиме он работает в режиме, близком к нулевому значению усиливаемого сигнала.
Для ослабления других дестабилизирующих факторов в усилителях широко использовались отрицательные обратные связи. Анализу и расчету усилителей и других схем на электронных лампах посвящены работы американского ученого Г. Боде по теории и проектированию усилителей с обратной связью (1948 г.), A.M. Бонч‑Бруевича, Г.С. Цыкина, А.А. Ризкина, Г.В. Войшвилло (1956–1963 гг.) [11.33–11.37].
Одно из ранних применений электронных усилителей связано со стабилизацией источников питания. Стабилизаторы напряжения на электронных лампах представляют собой замкнутую систему с глубокой отрицательной обратной связью, с усилителями постоянного тока и пониженным минимальным остаточным напряжением. Разработка таких усилителей потребовала создания специальных мощных регулирующих ламп и исследования вопросов устойчивости и коррекции замкнутых систем.
Системы с обратной связью (замкнутым контуром регулирования) образуют весьма обширный класс. К ним относятся практически любые усилительные устройства, регуляторы, стабилизаторы и др. Изучение таких систем дало мощный стимул к созданию теории устойчивости, разработке систем с требуемыми параметрами быстродействия и качества регулирования. Анализу и синтезу систем с замкнутым контуром регулирования посвящена обширная литература.
Наиболее ощутимый вклад в методы расчета систем автоматического регулирования внесли работы советских ученых М.А. Айзермана, С.В. Емельянова, Л.С. Гольдфарба, B.C. Пугачева, Я.З. Цыпкина (1965–1975 гг.). Заложенные ими и многими другими исследователями теоретические основы позволили нашей стране занять лидирующее положение в мире в области авиационной техники и ракетно‑космических систем [11.39–11.44].
11.4.3. ИМПУЛЬСНЫЕ УСТРОЙСТВА
Импульсными называют информационные и энергетические электронные устройства, основанные на работе переключающих элементов и управлении моментами включения и выключения этих элементов. В зависимости от закона управления различают системы с амплитудной, частотной, широтной и фазовой модуляцией. Первые электронно‑ионные регуляторы, основанные на фазоимпульсном методе регулирования, были разработаны в СССР в 1937–1941 гг. Л.С. Гольдфарбом и Г.Р. Герценбергом. Они содержали все узлы, характерные и для современных систем импульсного регулирования: измеритель регулируемой величины, компаратор, усилитель рассогласования, импульсный модулятор и усилитель мощности для энергетического воздействия на объект управления.
Импульсные энергетические преобразовательные устройства, основанные на работе управляемых силовых вентилей и полупроводниковых ключевых элементов в замкнутых системах импульсного регулирования, являются основой быстро развивающегося направления силовой (энергетической) электроники.
Информационные импульсные устройства основаны на преобразовании информации с использованием одного из видов импульсной модуляции, дискретизации данных и изменении числа координат. Наиболее распространенные виды преобразования информации импульсными устройствами: развертка (сканирование), частотно‑ и широтно‑импульсная модуляция, измерение временных характеристик сигнала (моментов перепада, периода, частоты).
Впервые идея сканирования как последовательного просмотра точек плоского объекта была запатентована в Германии в 1884 г. Паулем Нипковым. Диск П. Нипкова был основой первого телевизора с механической разверткой. Благодаря развертке плоский двумерный образ преобразовывался в одномерный сигнал яркости.
На принципе развертывания основано осциллографирование процессов, изменяющихся во времени. Привычная всем картина изменения сигнала в функции времени на экране электронно‑лучевой трубки может быть получена при условии равномерного движения изображающего элемента (электронного луча, светящейся точки) по одной координате и отклонения этого элемента по другой координате на значение, пропорциональное сигналу. Идея развертки для наблюдения процессов была выдвинута Л.И. Мандельштаммом в России в 1907 г., применение электронно‑лучевой трубки с этой целью предложено в России Б.Л. Розингом в том же году. Эта фундаментальная идея дала множество выдающихся технических решений.
Применение развертывающего преобразования можно пояснить несколькими примерами из арсенала средств промышленной электроники.
Определение местонахождения поврежденного участка основано на использовании отраженного эхосигнала и точном измерении времени между посланным зондирующим импульсом и принятым отраженным.
К этому классу приборов относятся искатели повреждений в линиях электропередачи. Искатель повреждений генерирует зондирующий импульс напряжения, который распространяется в линии, порождая отражения от различных неоднородностей. Измеряя время между зондирующим и отраженным импульсами, можно определять местонахождение аварийного участка.
К этому же классу приборов относятся импульсные ультразвуковые дефектоскопы. Источником зондирующих сигналов в них служит пьезопреобразователь, дающий акустический импульс; он же используется и для обратного преобразования отраженного акустического сигнала в электрический.
Точное измерение времени между зондирующим и отраженным импульсами производится одним из двух способов: измерением расстояния между импульсами на экране электронно‑лучевой трубки или подсчетом числа меток времени, генерируемых с эталонной частотой. Второй из этих методов оказался более предпочтительным и получил широкое распространение и развитие.
Время – наиболее удобная физическая величина для эталонирования и прецизионного измерения. Кварцевые генераторы давно и прочно вошедшие в практику радиотехнических систем, продолжают до наших дней сохранять свое место и значимость, как простые и сравнительно дешевые эталоны частоты или интервалов времени с точностью порядка 10‑6–10‑7.
Приборы для ультразвуковой дефектоскопии и искатели повреждений широко распространены в энергетике, машиностроении, железнодорожном транспорте. Они не требуют мощных установок высокого напряжения, как рентгеновские промышленные аппараты, экологически безопасны в отличие от радиоизотопных дефектоскопов. При частоте ультразвуковых колебаний 2–4 МГц удается обнаруживать неоднородности в материале площадью до 1 мм2. В Советском Союзе промышленное производство дефектоскопов ведется с 50‑х годов.
Промышленное применение развертывающего преобразования связано с измерением ширины листа прокатываемого металла. При большой скорости движения полосы горячего металла в условиях вибрации единственным способом измерения могло быть бесконтактное оптическое сканирование. Измеритель проката был разработан в лаборатории автоматики Института черной металлургии (Г.Х. Зарезанко). Два сканирующих измерительных устройства определяли координаты обеих кромок листа, разность координат в 1960 г. с помощью показывающих и регистрирующих приборов позволяли быстро измерить и зафиксировать ширину ленты проката. Создателю установки пришлось решить проблему оптических помех, точного и воспроизводимого измерения положения фронта импульсов при сравнительно низкой крутизне.
Развертывающее преобразование в промышленных устройствах было реализовано с помощью специально разработанного для таких устройств прибора – диссектора. Сравнительно низкая чувствительность компенсировалась большой яркостью источника света. Быстродействие диссектора оказалось существенно выше, чем у передающих телевизионных трубок с накоплением заряда.
Естественным следующим шагом на пути развития развертывающих и сканирующих устройств стали установки промышленного телевидения. Их основные функции – наблюдение за процессами в условиях, когда непосредственное нахождение оператора вблизи объекта невозможно, нежелательно или сопряжено с опасностью [11.45, 11.46].
На развитие импульсной техники решающее влияние оказало развитие радиолокации. Это направление способствовало, во‑первых, формированию импульсов высокой энергии. Повышение мощности излучаемого импульса при разумных ограничениях на среднюю энергию установки стало возможным лишь благодаря импульсному характеру работы при отношении периода к длительности импульса порядка 1000. Во‑вторых, разрешающая способность импульсного устройства во времени могла быть повышена только за счет увеличения крутизны фронтов используемых сигналов. Как и во многих других направлениях, промышленное использование импульсной техники стало вторичным результатом их применения в оборонных отраслях. Благодаря импульсному характеру сигнала удавалось получать импульсы высоких энергий от относительно маломощных устройств. Этому способствовало свойство электронных ламп с оксидными катодами давать огромные по сравнению со средними токи импульсной эмиссии. Электронная лампа со средним током в десятки миллиампер могла длительное время эксплуатироваться с импульсными токами в несколько ампер.
В отличие от радиолокационных систем технические средства промышленной электроники заняли полный диапазон возможностей и способов импульсной модуляции. Регулирование среднего и действующего напряжений осуществлялось путем изменения коэффициента заполнения при широтно‑импульсном регулировании. Исторически первой была освоена разновидность импульсного регулирования, при которой синхронное с сетью отпирание вентиля осуществлялось с запаздыванием по отношению к моменту естественной коммутации. Широтно‑импульсное регулирование постоянного напряжения получило распространение в высокоэкономичных импульсных стабилизаторах постоянного напряжения. Это стимулировало развитие и инженерное приложение теории замкнутых импульсных систем.
Анализу импульсных систем в 60‑е годы посвящены фундаментальные работы Я.З. Цыпкина [11.39]. В промышленной электронике для решения задач регулирования мощности импульсная техника стала главным инструментом воздействия. Классические методы управления преобразователями, основанные на использовании угла запаздывания отпирания управляемых вентилей, вначале базировались на сдвиге фазы управляющего сеточного напряжения ртутных преобразователей (так называемый горизонтальный метод). Следующим и гораздо более перспективным стал вертикальный метод. Сущность его состояла в фиксации момента сравнения развертывающего (гармонического или пилообразного) сигнала с управляющим. Вертикальный метод фазосмещения стал основным инструментом широтно‑импульсного, фазоимпульсного и (в соответствующем исполнении) частотно‑импульсного регулирования.
Многоканальная система импульсно‑фазового управления преобразователями служит для управления многофазными преобразователями. Система содержит несколько (по числу фаз) источников опорного напряжения, синхронных с напряжениями питания соответствующих фаз. Напряжения опорных источников сравниваются с помощью компараторов с единственным для всех фаз управляющим сигналом. Задержка срабатывания каждого компаратора дает запаздывание момента отпирания вентиля в соответствующей фазе. Форма опорного напряжения (косинусоидальная или пилообразная) дает разные регулировочные характеристики.
Для успешной реализации вертикального способа фазосмещения необходимо было решить вспомогательные задачи формирования опорного напряжения, сравнивания двух сигналов, формирования управляющего импульса определенной амплитуды и длительности в момент равенства двух сигналов. Для выполнения этих задач были разработаны специальные импульсные схемы: в 1918 г. М.А. Бонч‑Бруевичем было предложено катодное реле; в 1919 г. американцы X. Абрагам и Е. Блох изобрели мультивибратор; в 1919 г. американцы В. Иклс и Ф. Джордан изобрели схему, без которой трудно представить себе современную компьютерную цивилизацию, – триггер. Были сделаны сотни изобретений различного рода формирователей импульсов, генераторов линейно изменяющихся напряжений и токов, блокинг‑генераторов (мощных импульсных схем с глубокой положительной обратной связью).
Анализ схем с обратными связями, возникновение колебаний в нелинейных системах, решение задач об устойчивости таких схем стали предметом работ А.А. Андронова, А.А. Витта, С.Э. Хайкина (1959 г.) [11.38].
11.4.4. РАЗВИТИЕ ПОЛУПРОВОДНИКОВОЙ ИНФОРМАЦИОННОЙ ТЕХНИКИ
Создание транзисторов в 50‑х годах положило начало развитию полупроводниковой информационной техники.
Первый отечественный точечный транзистор обладал усилительными свойствами, однако большой технологический разброс параметров и сильное влияние температуры на параметры прибора сделали его мало перспективным прибором для усиления. Расцвет полупроводниковой схемотехники начался с создания и широкого распространения плоскостных сплавных транзисторов. Такие привлекательные качества транзисторных устройств, как отсутствие цепей накала и мгновенная готовность к действию, малые габариты и высокая механическая прочность, неограниченный срок службы, были главными аргументами в течение первых лет развития полупроводниковой схемотехники в споре со сторонниками ламповой электроники. Те, в свою очередь, указывали на низкое входное сопротивление, температурную нестабильность, сравнительно низкую предельную частоту.
Так или иначе, вновь появившийся прибор – транзистор привлекал внимание специалистов разных направлений. Появилась система параметров, учитывающая, в отличие от ламповых каскадов взаимосвязь не трех, а четырех параметров: входных и выходных токов и напряжений.
Были разработаны схемы каскадов и методы расчета цепей смещения, обеспечивающие стабильность режима покоя. Значительная доля транзисторных усилителей промышленного назначения работает с сигналом сетевой частоты 50 Гц и представляет собой фазочувствительный усилитель с выходом на постоянном токе. Такие усилители использовались для управления контакторами, электромашинными и магнитными усилителями, а также в качестве промежуточных звеньев для управления тиристорными и иными мощными силовыми ключами.
Подобные фазочувствительные усилители нуждаются в уменьшении мощности потерь в выходных каскадах. Здесь важную роль играет не столько КПД каскадов, сколько решение проблемы охлаждения транзисторов. Снижение мощности потерь было достигнуто заменой постоянного питающего напряжения фазочувствительных каскадов пульсирующим, полученным непосредственно в результате выпрямления переменного напряжения сети.
Полупроводниковые приборы предоставили разработчикам схем новые возможности: наличие двух видов транзисторов – p‑n‑р‑ и п‑p‑n‑ типов дало новые решения балансных симметричных схем.
Успешно разрабатывались транзисторные стабилизаторы напряжения. Их показатели были очень высоки: хорошая стабильность, высокая эффективность, множество дополнительных функциональных возможностей (защита от перегрузок, плавный пуск). Неслучайно стабилизаторы стали теми функциональными узлами, которые одними из первых начали выпускать в виде конструктивно завершенных гибридных, а затем и монолитных интегральных схем.
Продолжением и естественным развитием идеи высокоэффективных преобразований сигналов является использование ключевых свойств транзистора. Кажущаяся очевидной мысль о нулевых потерях мощности в идеальном ключевом элементе не сразу получила свое практическое выражение. Одним из первых завершенных транзисторных преобразователей с использованием ключевого режима стал хорошо известный генератор Ройера (С.Н. Royer, 1955 г., США) – автогенератор с магнитной связью на основе материалов с прямоугольной петлей гистерезиса. Схемы на основе подобных генераторов быстро вытеснили контактные вибропреобразователи в источниках питания. Для того чтобы ключевые режимы транзисторов можно было использовать в целях обработки аналоговой информации требовалось глубокое понимание спектральных преобразований сигнала при различных видах импульсной модуляции и существенное повышение частотных свойств транзисторов.
Одним из первых теоретических положений о возможности передачи аналоговой информации с ограниченным спектром последовательностью импульсов следует считать теорему В.А. Котельникова (1933 г.); идеи спектральных преобразований модулируемых сигналов были развиты в классических работах А.А. Харкевича. Для реализации экономичных импульсных методов обработки сигналов потребовалось достижение предельных частот транзисторов на несколько порядков выше частоты передаваемого сигнала [11.52].
Практические достижения этого нового и перспективного направления применения транзисторов были реализованы О.А. Коссовым (1964 г.) и О.А. Хасаевым (1966 г.). Важную роль в распространении знаний о транзисторах, их практическом применении в промышленной электронике сыграли ставшие периодическими выпуски сборников статей «Полупроводниковые триоды в автоматике» под редакцией Ю.И. Конева.
Значительным успехом транзисторной электроники стало создание и широкое распространение кремниевых биполярных транзисторов. Благодаря физическим свойствам кремния эти транзисторы обладают более высокой стабильностью свойств при колебаниях температуры, значительно меньшими обратными токами переходов по сравнению с германиевыми. По мере совершенствования технологии и повышения чистоты исходного материала повысились предельные напряжения на переходах с 20–50 В у первых германиевых транзисторов до нескольких сотен вольт у современных кремниевых. Так же быстро росли частотные свойства приборов: от десятков и сотен килогерц у первых сплавных германиевых приборов до десятков мегагерц у современных кремниевых.
Изобретение в 50‑е годы полевых (униполярных) транзисторов вначале не оставило заметного следа в полупроводниковой схемотехнике. Положение изменилось с разработкой новых технологий изготовления переходов. Современные полевые транзисторы не уступают биполярным по предельным значениям параметров и частотным свойствам и образуют самостоятельную группу с явно выраженными свойствами и областью применения.
Было бы несправедливо описывать развитие полупроводниковой электроники только с позиции совершенствования и обновления элементной базы. Создание новых устройств и систем промышленной электроники затронуло все сферы производства. Промышленность успешно освоила автоматизированное проектирование и производство печатных плат, беспроводной монтаж, методы входного и пооперационного контроля изделия. Тем не менее производство новых типов изделий проходило последовательно одни и те же этапы: задание на разработку, создание структурной и функциональной схем, разработка принципиальной схемы с использованием доступных и разрешенных комплектующих элементов; далее конструирования, подготовки производства и т.д. Каждая новая разработка проходила все этапы. В этих условиях было естественно для изделий массового производства автоматизировать все этапы разработки и изготовления. Так родились системы автоматизированного проектирования (САПР), системы изготовления печатных плат, системы размещения деталей и автоматической пайки, контроля плат и готовых изделий.
Новой сферой применения средств электроники стала обработка логических сигналов. До сих пор предполагалось, что любой сигнал содержит информацию, которая ставится в соответствие с количественной характеристикой сигнала: мгновенным значением аналогового напряжения, частотой гармонического носителя, длительностью импульса в последовательности.
Наряду с такими сигналами все большее применение находили логические сигналы, которые могли принимать фиксированное множество значений и отвечали на вопрос, принадлежит или не принадлежит данный сигнал к одному из подмножеств.
Общеизвестными стали двоичные (бинарные) сигналы, которые давали однозначный ответ на вопрос, истинно или ложно то или иное положение. Информация в таком сигнале содержалась не в уровне сигнала, а в его принадлежности к некоторому множеству. У бинарных сигналов это множество соответствует двум различным значениям, которые определяются как высокий (единичный) и низкий (нулевой) уровень. С логическими бинарными сигналами часто встречаются в технике, когда возникает необходимость отобразить состояние контакта (замкнут, разомкнут), транзисторного ключа (насыщен или находится в режиме отсечки). На основе логических переменных были введены логические функции. Примером логической функции может служить правило функционирования некоторого устройства: агрегат должен быть включен, если присутствует напряжение сети, температура не вышла из допустимых пределов, а с момента подачи сигнала на включение прошло не менее 5 с. На начальном этапе развития логических устройств в 50‑е годы была осознана возможность реализации любых алгоритмов логического управления при ограниченном элементном базисе. Достаточно иметь весьма ограниченный набор типовых логических элементов, например, И, ИЛИ, НЕ, И‑НЕ, ИЛИ‑НЕ, чтобы из них можно было создать электронное устройство любой сложности и любого функционального назначения.
Первые типовые логические элементы создавались на основе транзисторно‑резисторных, диодно‑транзисторных, транзисторно‑транзисторных ячеек (РТЛ, ДТЛ, ТТЛ), выполняемых из дискретных компонентов навесным монтажем или на печатных платах. Конструктивно они выполнялись в виде компактного параллелепипеда в пластмассовом корпусе, иногда залитого эпоксидной смолой (рис. 11.12). Монолитный брусок с набором внешних выводов имел хорошие механические свойства. Слабым местом устройств были внешние выводы и соединения. Проектирование логических устройств означало полное, исчерпывающее описание функционирования на языке булевой алгебры, приведение к выбранному элементному базису и схемотехническое (топологическое) проектирование.
Рис. 11.12. Первые микромодули (1955–1960 гг.)
а – объемно‑плоские; б – микроэлементы, собранные в «этажерки»; в – герметизированные; г – блок аппаратуры на микромодулях
11.4.5. ИНТЕГРАЛЬНЫЕ ЛОГИЧЕСКИЕ И АНАЛОГОВЫЕ МИКРОСХЕМЫ
Интеграция в электронике проявилась как результат объединения нескольких элементов схем в один функционально и конструктивно завершенный узел. На этом этапе развития полупроводниковой схемотехники произошло удачное объединение микроэлектроники с развитым аппаратом логического проектирования. В 50–60‑х годах было освоено массовое производство интегральных схем малой степени интеграции (до нескольких десятков логических элементов в одном корпусе). На их основе стало возможным проектирование устройств, выполняющих любые требуемые функции.
Переход от логических модулей на дискретных компонентах к интегральным логическим схемам ознаменовал начало победного шествия интегральной электроники и схемотехники.
Методы интегральной технологии позволили получить на одном кристалле – микроскопическом кусочке полупроводника – целое микроэлектронное устройство, содержащее диоды, транзисторы, резисторы. Выполнение функциональных узлов на таких микросхемах стало значительно менее трудоемким, надежность возросла благодаря меньшему числу внешних соединений. Дальнейшее развитие микросхемотехники шло по пути поиска компромисса между повышением степени интеграции и универсальностью микросхем. Методами интегральной технологии можно изготовить весьма сложную схему, однако она будет находить ограниченное применение в силу своей специфичности, а следовательно, ее производство станет нерентабельным, такая микросхема окажется дороже узла, выполненного на элементах малой степени интеграции. Наряду со схемами малой степени интеграции (до 10 логических вентилей на одном кристалле) получили распространение средние (до 100 вентилей) и большие интегральные схемы (до 1000 вентилей). Здесь логическим вентилем назовем минимальную структуру, имеющую один вход и один выход (внутренний или внешний). В 1980 г. интеграция достигла 3 млн. вентилей на одном кристалле (чипе) – так называемые сверхбольшие интегральные схемы (СБИС).
Наряду с логическими интегральными схемами начался массовый выпуск аналоговых микросхем, в первую очередь операционных усилителей. Первые операционные усилители с навесным монтажем и на дискретных компонентах были сложны, громоздки и годились для использования в дорогостоящем оборудовании. Освоение балансных симметричных интегральных операционных усилителей произвело радикальные перемены в усилительной технике и возможностях ее применения. Прежде всего усилитель перестал быть устройством в конструктивном отношении, он стал элементом, модулем со скромным набором выводов. Массовый спрос породил массовое производство; усилитель стал дешевым, доступным элементом. Области их применения резко расширились. Благодаря развитию современной теории электрических цепей появилась возможность синтеза схем с заданными частотными и переходными свойствами, втом числе активных фильтров, корректирующих звеньев и других средств, задающих амплитудно‑ и фазочастотные характеристики. Один из главных аргументов скептиков – низкое входное сопротивление интегральных схем – отпал с появлением каскадов на полевых транзисторах. Успехи в области аналоговых интегральных схем привели к тому, что интегральные полупроводниковые микросхемы превзошли своих ламповых предшественников по всем важнейшим параметрам: коэффициенту усиления, входному сопротивлению, шумовым свойствам, предельной частоте. Пожалуй, они уступают только в максимальном уровне выходного напряжения. Неслучайно по массовости выпуска почти у всех фирм‑производителей операционные усилители занимали первую строку.
В годы расцвета интегральной электроники первого поколения (50‑е годы) быстро возникали новые функциональные решения на основе аналоговых узлов с использованием их нелинейных свойств. Помимо традиционных сумматоров, интеграторов, инвертирующих и неинвертирующих каскадов были разработаны компараторы, дифференциальные каскады, ограничители амплитуды, схемы защит от перегрузок, восстановители постоянной составляющей, фиксаторы уровня, мультивибраторы, одновибраторы, триггеры Шмитта. Специалисты, накопившие большой опыт работы со старой, классической аналоговой схемотехникой, получили в свое распоряжение мощный арсенал технических средств интегральной электроники.
Наличие цифровых и логических средств, с одной стороны, аналоговых – с другой породило необходимость создания цифроаналоговых и аналого‑цифровых преобразователей. На смену классическим преобразователям, выполняемым на навесных компонентах и реализующим принципы кодоимпульсного и времяимпульсного преобразования, пришли интегральные схемы. Современные преобразователи в составе интегральных схем имеют развитую управляющую часть. Работа такой интегральной схемы представляет собой достаточно сложную последовательность действий. Пример алгоритма аналогово‑цифрового преобразования:
выборка аналоговой величины, т.е. запоминание и хранение отсчета, сделанного по команде таймера или по условию;
формирование компенсирующего сигнала, который набирается из серии нормализованных значений, обычно двоичных; число разрядов может быть различным, распространенное число 10, что обеспечивает предельную разрешающую способность 0,1%;
запись в выходной регистр результата и подтверждение готовности к выполнению следующего цикла.
В современных ЦАП и АЦП использованы как уже известные принципы, например поразрядного взвешивания, так и те способы, которые не могли быть успешно реализованы из‑за схемотехнической сложности. К последним относится способ считывания, который не имеет себе равных по быстродействию, но требует большого числа быстродействующих компараторов. Число компараторов, определяемое разрешающей способностью аналогового канала, может достигать нескольких тысяч. Естественно, аппаратная реализация такого аналогово‑цифрового преобразования возможна только на основе больших интегральных микросхем [11.53, 11.54].
11.4.6. ЭЛЕКТРОННЫЕ АВТОМАТЫ С ПАМЯТЬЮ
В развитии интегральной схемотехники заслуживает упоминания такой этап, как синтез автоматов с памятью. В 1961 г. появились ставшие классическими работы В.М. Глушкова по синтезу автоматов, имеющих конечное множество внутренних состояний. Этому классу цифровых (логических) устройств принадлежит множество средств промышленной электроники. Описать функционирование автоматов можно, разделив их (со значительной степенью условности) на следующие узлы:
собственно узел памяти, выполняемый на основе триггеров и обладающий способностью находиться в требуемом множестве состояний;
комбинационная логическая схема, преобразующая множество входных управляющих сигналов в сигналы, управляющие переходами автомата из одного состояния в другое;
комбинационная логическая схема, преобразующая информацию о состоянии автомата и о входных сигналах в сигналы выхода.
Концепция управляющего устройства с определенным объемом памяти состояний и способностью преобразования алфавитов дискретных входных сигналов, сигналов возбуждения автомата (сигналов переходов) и сигналов выходов оказалась достаточно плодотворной. На ее основе были созданы инженерные методы формализованного синтеза автоматов в заданном элементном базисе. Разработка схемы некоторого устройства, описанного на языке специалиста в данной профессиональной области, могла быть сведена к последовательности хорошо структурированных действий. Так, создание устройства трехкратного автоматического повторного включения агрегата означало, что вначале требовалось определить множество входных сигналов, вызывающих отключение агрегата (исчезновение фазного напряжения, перегрузка по току), затем надо было организовать счетчик числа неудачных попыток пуска, таймер для задания интервала времени между попытками включения и таймер, который подтверждал бы успешную реализацию последней попытки и сбрасывал бы счетчик неудачных попыток. Далее на одном из хорошо развитых языков автоматных описаний (язык графов, таблиц соответствия, формул, функций возбуждения или граф‑схем алгоритмов) надлежало описать функционирование автомата, Одна из важнейших задач этого этапа – убедиться в полноте описания, т.е. проверить, не попадает ли автомат в одно из тупиковых состояний и не «зависает» ли он там до вмешательства персонала. Следующий этап – выбор элементной базы, т.е. набора интегральных схем, из которого можно создать требуемое устройство. Кончается творческая инженерная работа специалиста по автоматизации созданием топологии схемы, связывающей входные датчики и источники управляющих сигналов с автоматом. Принципиальная схема как результат этого этапа разработки устанавливает внутренние связи между выводами интегральных схем, выводами автомата и исполнительными органами, внешними источниками сигналов, средствами индикации и регистрации [11.47–11.51].
Методы синтеза дискретных (цифровых) автоматов были успешно освоены тем поколением инженеров‑разработчиков, которое уже имело в своем распоряжении малые и средние интегральные схемы, но еще не имело микропроцессоров и промышленных микроконтроллеров.
Развитие методов и инженерных методик синтеза цифровых автоматов является заслугой А.Д. Закревского, С.И. Баранова, В.А. Склярова и других специалистов в области разработки цифровых схем (1966–1977 гг.).
Проектирование цифровых устройств на интегральных элементах получило дальнейшее развитие благодаря возможности сочетать микросхемы разной степени интеграции в поисках наиболее рационального и экономичного решения. Инженер‑разработчик, получив задание на создание цифрового устройства с заданными функциональными характеристиками, мог пользоваться набором интегральных модулей разной степени интеграции. Процесс разработки состоял в выборе типов модулей, способов их соединения и алгоритма работы.
Этот путь конструирования, представляющийся наиболее естественным, получил широкое распространение («конструктор»). Помимо него был разработан и стал применяться другой путь (назовем его «скульптор»), который воспроизводит известное высказывание о том, как скульптор создает свои произведения: он берет глыбу материала и удаляет из нее все лишнее.
Исходный материал представляет собой большую интегральную схему с регулярной структурой, в которой можно удалять (разрушать) лишние связи и вводить новые соединения путем воздействия на исходную схему электрическими сигналами. Оба способа разработки имеют свои преимущества, однако второй (применение однородной структуры) менее распространен из‑за сложности проектирования и технической реализации.
Поскольку любая логическая схема, автомат с памятью могут быть выполнены с использованием весьма ограниченного набора типов малых и средних интегральных схем, то нельзя ли поставить задачу о создании БИС, которая стала бы основой для создания любой заданной структуры? Положительный ответ на этот вопрос был в значительной мере предопределен разработанной к этому времени техникой программирования постоянных запоминающих устройств (ПЗУ) и программируемых логических матриц (ПЛМ).
Универсальная исходная матрица ПЗУ, программируемых пользователем, допускает запись на нее любой информации путем пережигания выбранных перемычек в кристалле. Для записи осуществляется поочередный перебор адресов ячеек; по заранее рассчитанным адресам осуществляется запись данных, т.е. такое энергетическое воздействие на выбранную ячейку, которое делает ее хранителем состояния, инверсного исходному. Описанная технология соответствует однократно программируемому пользователем ПЗУ. За последующие годы (1983–1990 гг.) разработаны различные типы ПЗУ, в том числе модули со стиранием записанной информации ультрафиолетовым излучением или модули, в которых стирание производится посредством электрического сигнала. Каждая ячейка, адрес которой выбран, позволяет прочитать записанные в ней данные: нуль или единица в каждом бите слова данных. Это вполне эквивалентно выполнению данной ячейкой логической функции. Таким образом, соответственно запрограммированная БИС памяти может выполнять те же переходы и формировать те же последовательности слов на выходе, что и специально разработанная схема. Значит, для некоторого, достаточно обширного класса задач нет необходимости разрабатывать множество схем, необходимо иметь единственный кристалл, а различие функций закладывать на этапе программирования содержимого памяти. Тогда вместо разработки аппаратуры можно разработать и записать в программируемую память соответствующее содержимое. Высокая технологичность этой операции удачно сочетается с высокой надежностью полученного устройства благодаря уменьшенному числу внешних проводников и паяных соединений.
Следующий шаг на пути перехода от разработки структур схем к разработке функций, выполняемых БИС, был сделан с изобретением ПЛМ. Матрица обладает более широкими функциональными возможностями по сравнению с программируемой памятью. Однако промышленный выпуск ПЛМ не стал сколько‑нибудь заметной вехой в создании интегральных средств автоматизации.
11.4.7. МИКРОПРОЦЕССОРЫ И МИКРОКОНТРОЛЛЕРЫ
Создание цифровых средств управления на основе БИС стало возможным после появления микропроцессоров (МП). В 1971 г. американская фирма «Intel» выпустила первое устройство («Intel 4004»), предназначенное для выполнения вычислительных операций в средствах вычислительной техники. Считают, что это событие по значимости сравнимо с изобретением транзистора.
Микропроцессор – это программно‑управляемое устройство, осуществляющее обработку цифровой информации, выполненное в виде одной или нескольких БИС.
По существу, все вычислительные средства имеют сходное устройство и близкие принципы выполнения операций. Поэтому современные БИС микропроцессоров воспроизводят те структуры и операции, которые хорошо известны разработчикам и пользователям вычислительных средств. Различают два класса микропроцессорных систем: микроЭВМ и микроконтроллеры. Первые предназначены главным образом для вычислительных работ высокой производительности. Микроконтроллеры – управляющие системы, используемые для автоматизации управления технологическими операциями. Контроллеры характеризуются сравнительно малым объемом памяти, специфичным набором команд, наличием встроенных устройств ввода‑вывода (УВВ).
В качестве УВВ могут использоваться АЦП и ЦАП, фотосчитывающие устройства, средства отображения информации и ее регистрации, концевые выключатели, терморезисторы и термопары, датчики перемещения, угла поворота и иные подобные устройства.
До появления МП стратегия электронных устройств автоматики формулировалась так: одна функция или группа взаимосвязанных функций – одно устройство. Появление новых функциональных задач означало необходимость разработки новых устройств. МП и их функциональное продолжение – микроконтроллеры нарушили эту стратегию. Теперь она может формулироваться иначе: если устройство выполняет операцию или достаточно длинную последовательность операций, которые могут быть реализованы с помощью процессоров, то поочередное их выполнение позволит одному процессору обслуживать несколько устройств и решать различные задачи. Благодаря этому аппаратные затраты на автоматизацию существенно сокращаются. Поскольку быстродействие процессора велико (одна операция выполняется за долю микросекунды), то последовательный характер обработки информации разных источников может быть незаметным для пользователя. Управление процессорами в системе, которая обслуживается микроконтроллером, потребовало нового способа мышления от разработчиков средств автоматизации. Основные изменения в подходах связаны с цифровым способом представления и обработки информации; необходимостью представления любой операции в форме, которая может быть выполнена МП за конечное число машинных операций. Важнейшей частью разработки становится составление алгоритма выполнения операции. Возможность решения многих задач обусловлена тем, что полученный результат может быть превращен в соответствующий управляющий сигнал, который запоминается и поступает на выход в течение некоторого времени; в это время процессор освобождается для ввода данных других источников информации, обработки их по другим алгоритмам или программам и подачи сигналов управления на другие выводы контроллера.
Процесс управления, таким образом, практически не отличается от выполнения вычислений по программе; возможности микроконтроллера могут быть более скромными, чем у вычислительной машины, в отношении точности (разрядности) и объема памяти. Микропроцессорное управление промышленными объектами может строиться на иерархическом принципе: процесс управления реализует дерево целей – совокупность ярусов, где каждый ярус описывает управление на соответствующем уровне иерархии.
Наиболее ответственные задачи решает ЭВМ высшего уровня, которая описывает поведение частей системы в более общем виде; выходная информация этой ЭВМ воспринимается как задание контроллерам низших уровней. Таким образом, каждый ярус управления в иерархической системе подчиняется сигналам высших уровней и управляет поведением низших.
Примером подобных иерархических систем могут служить микропроцессорные средства управления лазерной технологической установкой. Такая установка содержит несколько подсистем (поддержания вакуума и обеспечения газовой среды; обеспечения скорости прокачки газа; электропитания для поддержания оптимальных параметров тлеющего разряда; перемещения обрабатываемой детали и т.п.). Каждая подсистема выполняет локальную задачу, совокупность их обеспечивает требуемое качество процесса в целом.
Крупносерийный выпуск интегральных схем микроконтроллеров со встроенными таймерами, АЦП и ЦАП имеющих режим ожидания с малым энергопотреблением, сделал рентабельным их применение даже в сравнительно простых устройствах бытовой техники, автомобилях и т.д.
Каждая из составных частей микропроцессорной системы должна быть связана с процессором. Принятая так называемая магистральная система связей обладает большой гибкостью, способностью к модификации структуры и ее наращиванию.
Успехи в развитии интегральной электроники привели к появлению интегральных схем цифровых сигнальных процессоров. Благодаря большому быстродействию и высокой разрядности они дают возможность, например, анализировать с высокой точностью форму тока энергетической установки и управлять компенсатором неактивной мощности. С этой целью за один период напряжения сети (20 мс) выполняются тысячи операций с многоразрядными числами и осуществляется управление силовым коммутатором с широтно‑импульсной модуляцией с тактовой частотой до 10 кГц.
Современные микроконтроллеры используются, в частности, для комплексной автоматизации автомобиля. Сюда входит управление двигателем и оптимизация его режима, управление антиблокировочной системой, климатизация салона, управление многочисленными механизмами – от стеклоочистителей до локаторов опасного сближения.
Дата добавления: 2016-01-30; просмотров: 2640;