ЦИФРОВЫЕ ЭЛЕКТРОИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ

 

Цифровые электроизмерительные преобразователи, приборы и системы возникли в результате проникновения идей технической кибернетики, компьютерной техники и радиоэлектронной элементной базы в измерительную технику.

Важную роль при этом сыграл постоянный рост требований к средствам измерений в связи с усложнением, интенсификацией и автоматизацией производства и научных исследований. Новые задачи требовали получения и использования не результатов отдельных измерений, а потоков измерительной информации. Зачастую необходимо получать информацию о тысячах однородных и разнородных измеряемых величин и обрабатывать ее в реальном масштабе времени по сложным алгоритмам. Для решения подобных задач со второй половины XX в. стали создаваться наиболее сложные цифровые средства измерений – информационно‑измерительные системы и измерительно‑вычислительные комплексы, строящиеся на базе ЭВМ, а также аналоговых, аналого‑цифровых и цифровых приборов и преобразователей.

Отличительным признаком цифровых средств измерений является наличие в них измерительных преобразователей аналоговых сигналов измерительной информации в цифровые – аналого‑цифровых преобразователей (АЦП).

Эти преобразователи осуществляют дискретизацию сигналов по времени, квантование по значениям и кодирование. Поиск и изучение структур и алгоритмов работы АЦП, создание на их основе все более совершенных цифровых средств измерений шли в тесной связи с развитием радиоэлектроники и вычислительной техники.

Первые цифровые вычислительные машины с программным управлением были построены в 40‑х годах. В 1942 г. К. Цюзе в Германии, а в 1944 г. Г. Айкен в США построили такие машины на базе электромагнитных реле с управлением от перфокарты. В 1945 г. идея программного управления вычислительным процессом была четко сформулирована и развита американским математиком Дж. фон Нейманом. А в 1946 г. впервые была публично продемонстрирована ЭВМ на базе электронных ламп, которая строилась в США во время второй мировой войны для военных целей.

Первая отечественная ЭВМ – малая электронная счетная машина – была построена под руководством С.А. Лебедева в 1949–1951 гг., а в 1952–1954 гг. была создана быстродействующая электронная счетная машина (БЭСМ). Эта машина, для построения которой потребовалось около 5000 электронных ламп, выполняла 8000 операций в секунду и была в свое время одной из самых быстродействующих.

С начала их появления ЭВМ стали использоваться не только для решения математических задач, но и для построения систем автоматического управления. Для работы таких систем требуется получение измерительной информации от объектов управления и представление ее в цифровой форме, «понятной» ЭВМ.

На пути к ЭВМ эта информация подвергается ряду преобразований. Так, при измерениях неэлектрических величин они обычно преобразуются сначала в электрические с помощью чувствительных элементов (первичных измерительных преобразователей, датчиков), затем в стандартные аналоговые сигналы (например, в постоянное напряжение от 0 до 10 В) с помощью аналоговых измерительных преобразователей и только потом в цифровые сигналы с помощью АЦП. Этот канал аналого‑цифрового преобразования может содержать еще целый ряд преобразователей: усилители, устройства линеаризации, фильтры, преобразователи кодов и т.д. Некоторые из перечисленных преобразователей могут в канале отсутствовать, но наличие АЦП обязательно. Это обстоятельство явилось мощным стимулом для создания и совершенствования этих преобразователей.

Управление объектами обычно производится с помощью аналоговых сигналов, в то время как ЭВМ вырабатывает цифровые сигналы. В связи с этим потребовалась разработка нового класса измерительных преобразователей – цифроаналоговых преобразователей (ЦАП). Разработка ЦАП стимулировалась потребностями не только систем автоматического управления. Они нашли широкое применение в различных областях техники, в том числе и при разработке различных средств измерений: цифровых мультиметров, измерительных генераторов, калибраторов напряжения и т.д. Кроме того, ЦАП начали применяться для построения АЦП.

Таким образом, АЦП и ЦАП легли в основу создания нового класса средств измерений – цифровых измерительных приборов (ЦИП) и информационно‑измерительных систем. ЦИП в отличие от АЦП предназначены для самостоятельного применения и представляют результат измерения в форме, пригодной для восприятия человеком. Поэтому все ЦИП имеют цифровые отсчетные устройства, построенные на базе цифровых индикаторов различных видов: газоразрядных, электролюминесцентных, жидкокристаллических, светодиодных и др. Однако неотъемлемой частью всех ЦИП является АЦП.

Создание ЦИП и информационно‑измерительных систем началось в 50‑е годы. К тому времени в различных областях науки и техники имелись достижения, значительно упростившие и ускорившие этот процесс. Были разработаны основы теории линейных, нелинейных и импульсных систем, модуляции и кодирования, анализа и синтеза логических схем, передачи сигналов. Накоплен опыт разработки и эксплуатации первых ЭВМ и телеизмерительных систем. Темпы создания средств цифровой электроизмерительной техники определялись в основном скоростью развития радиоэлектронной элементной базы.

Одними из первых были созданы АЦП и ЦИП последовательного счета. В этих приборах измеряемая величина преобразуется в число импульсов (числоимпульсный код), которое может высвечиваться на цифровом отсчетном устройстве. Подобная операция наиболее просто осуществляется по отношению к двум физическим величинам: частоте и интервалу времени.

Действительно, для преобразования частоты импульсного напряжения в число достаточно подсчитать число импульсов N за заданный известный промежуток времени Т. Отношение N/T и есть искомая частота, причем операцию деления можно свести к переносу запятой в цифровом отсчетном устройстве, выбрав значение Т равным 10n с, где n – целое число. При измерении частоты синусоидального напряжения она преобразуется в частоту импульсов (одному периоду должен соответствовать один импульс), что делается весьма просто. Для измерения интервала времени достаточно заполнить его импульсами с известной частотой f и подсчитать получившееся число импульсов N. Отношение N/f равно искомому интервалу времени.

Для технической реализации ЦИП, основанных на этой идее (методе последовательного счета), таких как частотомеры, измерители интервалов времени, фазометры, имелась готовая элементная база на основе электронных ламп: логические схемы, счетчики, ключи и т.д. Поэтому данные цифровые приборы появились одними из первых. Для их реализации позже были разработаны и специальные электронные приборы – декатроны, которые выполняли одновременно функции счета и индикации.

Описанный метод применим для измерения любой физической величины, если имеется измерительный преобразователь этой величины в интервал времени или частоту.

 

Рис. 12.6. Временная диаграмма работы преобразователя напряжения в интервал времени

 

В числе первых были разработаны преобразователи электрического напряжения в интервал времени, которые строились на основе метода динамической компенсации, предложенного в 1935 г. Ф.Е. Темниковым. Принцип действия таких преобразователей заключается в следующем (рис. 12.6). Измеряемое напряжение Ux сравнивается с компенсирующим его линейно изменяющимся напряжением uк, вырабатываемым специальным генератором. Момент Тx равенства напряжений определяется с помощью электронного компаратора. Интервал времени с начала процесса компенсации до срабатывания компаратора оказывается при этом пропорциональным мгновенному значению измеряемого напряжения в момент компенсации.

Для построения цифровых вольтметров рассмотренный метод практически не использовался из‑за сравнительно низкой точности и плохой помехозащищенности. Однако благодаря простоте технической реализации он применялся в 60‑е годы в информационно‑измерительных системах.

Более перспективным для создания цифровых вольтметров постоянного тока оказался метод двухтактного интегрирования. В нашей стране данный метод был предложен в 1958 г. А.К. Заволокиным и Г.И. Курахтановым; в 1960 г. В.Г. Беляков и Е.В. Добров построили цифровой вольтметр с двухтактным интегрированием. Примерно в это же время различные схемы таких вольтметров были запатентованы в США, Японии и других странах.

В данных вольтметрах измеряемое напряжение интегрируется за фиксированный интервал времени – первый такт интегрирования. На втором такте интегрируется эталонное напряжение противоположного знака. Момент перехода напряжения на выходе интегратора через нуль – момент окончания второго такта – фиксируется компаратором. Можно показать, что среднее значение измеряемого напряжения на первом такте интегрирования пропорционально длительности второго такта, который измеряется по методу последовательного счета.

Очень скоро выяснилось, что цифровые вольтметры с двухтактным интегрированием обладают рядом существенных преимуществ перед вольтметрами других систем. Прежде всего это высокие линейность, точность и помехозащищенность, а также простота схемы и сравнительно низкая стоимость. Уже первые такие вольтметры (например, японской фирмы «Такеда Рикен» («Takeda Riken») в 60‑е годы обеспечивали приведенную погрешность, не превышающую 0,01%, и имели гальваническое разделение между входными и выходными цепями с электростатическим экранированием, обеспечивающим подавление помех.

Главный недостаток данных вольтметров – низкое быстродействие; время измерения составляет обычно от 50 до 250 мс. Однако этот недостаток не является серьезным для автономных ЦИП, не работающих в составе информационно‑измерительных систем. Поэтому с 70‑х годов до нашего времени цифровые вольтметры с двухтактным интегрированием являются наиболее распространенными цифровыми приборами для измерений постоянных напряжений. Конечно, со временем в связи с развитием технологии эти приборы существенно модернизировались. В настоящее время основная часть цифровой и аналоговой схем подобного прибора обычно выполняется в виде одной микросхемы (например, типа ICL7106 американской фирмы МАКСИМ (MAXIM). Встроенные измерительные преобразователи позволяют использовать прибор в качестве мультиметра, измеряющего постоянные и переменные напряжения, токи, сопротивления, а иногда и другие физические величины.

О технических характеристиках современных АЦП с двухтактным интегрированием дает представление 22‑разрядный преобразователь типа AD1175 фирмы «Аналог Дивайсис» («Analog Devices»). Это модуль размерами 11x13x1,3 мм, сопрягаемый с персональным компьютером. Осуществляя 20 преобразований в секунду, он обеспечивает интегральную нелинейность не более 0,0001%, а дифференциальную – не более 0,000013%.

Начиная с 60‑х годов наряду с цифровыми вольтметрами с двухтактным интегрированием стали выпускаться вольтметры с предварительным преобразованием измеряемого напряжения в частоту. Такие приборы производила, в частности, английская фирма «Солартрон» («Solartron»). По свойствам и техническим характеристикам эти вольтметры близки к вольтметрам с двухтактным интегрированием, однако последние благодаря простоте и сравнительно низкой стоимости получили более широкое применение.

С появлением и быстрым совершенствованием ЦИП совершился переворот в представлениях о возможностях электроизмерительной техники. Например, измерение напряжения постоянного тока цифровым вольтметром с восьми‑ и даже девятизначным цифровым отсчетным устройством, с автоматическим выбором поддиапазона из ряда 0,1; 1; 10; 100; 1000 В и значением единицы младшего разряда 10 нВ на первом поддиапазоне, с входным сопротивлением более 1 ГОм на первых трех поддиапазонах несравнимо с измерением того же напряжения электромеханическими или электронными аналоговыми вольтметрами высших классов точности. По точности подобный цифровой вольтметр может конкурировать с наилучшими компенсаторами (потенциометрами) с ручным уравновешиванием, но существенно превосходит их по скорости и автоматизации процесса измерения.

Еще более разительный пример дает цифровое измерение частоты. Все аналоговые частотомеры основаны на каком‑либо косвенном методе измерений; например, в них может использоваться эффект влияния частоты на сопротивление цепи с реактивными элементами. Погрешность аналоговых частотомеров составляет обычно десятые доли процента. Цифровые частотомеры, измеряющие частоту в соответствии с ее определением, т.е. измеряющие число периодов за заданный промежуток времени, имеют несравненно более высокую точность. Применение кварцевых резонаторов для стабилизации интервала времени счета позволило обеспечить погрешность, не превышающую нескольких миллионных долей процента; лучшие цифровые частотомеры имеют 10 десятичных знаков на цифровом отсчетном устройстве.

Большой вклад в развитие цифровой электроизмерительной техники внесли отечественные ученые: Ф.Б. Гриневич, В.Ю. Кнеллер, В.Н. Малиновский, П.П. Орнатский, В.Н. Хлистунов, В.М. Шляндин М.П. Цапенко и многие другие.

С 60‑х годов начался процесс постепенного вытеснения аналоговых электромеханических и электронных измерительных приборов цифровыми. Уже к 1970 г. в США на долю цифровых вольтметров приходилось 75% всего объема выпуска приборов для измерения напряжения, а на долю цифровых частотомеров – 95%. Были разработаны цифровые мосты постоянного и переменного тока, фазометры, ваттметры, термометры, весы и многие другие ЦИП. Щитовые ЦИП стали конкурировать с аналоговыми приборами, традиционно размещавшимися на щитах диспетчерских пунктов. Цифровые тестеры к настоящему времени практически вытеснили аналоговые.

Скорость вытеснения аналоговых электроизмерительных приборов цифровыми определялась в основном скоростью развития и стоимостью микроэлектронной элементной базы. В начале 60‑х годов ЦИП создавались на дискретных полупроводниковых приборах. Например, в первых цифровых вольтметрах фирмы «Такеда Рикен» («Takeda Riken») каждый триггер строился на дискретных транзисторах. С 70‑х годов в ЦИП стали широко использоваться аналоговые и цифровые микросхемы, а в 80‑х – микропроцессорная техника.

Применение микропроцессоров в ЦИП позволило еще более улучшить технические характеристики этих приборов. Появилась возможность автоматизации процессов калибровки, коррекции погрешностей, диагностирования неисправностей, выбора диапазона измерений. Использование сложных алгоритмов обработки измерительной информации привело к улучшению метрологических характеристик и расширению функциональных возможностей ЦИП.

Например, современные цифровые частотомеры позволяют измерять не только частоты и интервалы времени, но и отношения частот и интервалов времени, их сумму и разность, длительность фронта и среза импульса, длительность каждого импульса в серии, определять среднее, максимальное и минимальное значения результатов в серии измерений, производить математическую обработку результатов измерений по различным программам и т.д. При этом такие приборы могут работать в жестких условиях эксплуатации, автономно или в составе информационно‑измерительных систем, с сигналами различной формы и уровня; использование идеи «обратного счета» позволило при заданной разрешающей способности уменьшить время измерения низких частот.

Таким образом, применение микропроцессоров позволило создать качественно новые ЦИП. Их точность увеличилась за счет уменьшения влияния помех и шумов путем цифровой обработки сигналов измерительной информации (в простейшем случае путем усреднения отсчетов, при котором происходит «обмен» быстродействия на точность), а также за счет самокалибровки и введения поправок в результат измерения. Появилась возможность накопления в памяти ЦИП большого массива результатов измерений, осуществления разнообразных математических операций над этим массивом; автоматическая самодиагностика ЦИП и переход от «жесткой логики» к программному управлению существенно упростили работу с такими приборами.

Безусловные преимущества ЦИП перед остальными приборами поставили вопрос о дальнейшем существовании последних. Доживают ли аналоговые электроизмерительные приборы свой век? В их пользу говорят простота, надежность, низкая стоимость, удобство и привычность считывания информации с помощью шкалы со стрелкой; простейшие из них не требуют источников питания. В настоящее время в связи с развитием ЦИП эти преимущества становятся все менее существенными. Практически перестали существовать светолучевые осциллографы, аналоговые электронные частотомеры; цифровые вольтметры и мультиметры сделали ненужными приборы сравнения с ручным уравновешиванием (компенсаторы и мосты); цифровые тестеры и осциллографы вытесняют аналоговые и т.д. Объем выпуска аналоговых электроизмерительных приборов имеет явную тенденцию к снижению, однако процесс этот довольно медленный; эти приборы, несомненно, войдут в XXI в.

Уменьшение объема выпуска аналоговых приборов не следует понимать как уменьшение значимости аналоговых средств измерений. Аналоговые измерительные преобразователи, такие как термопары, термометры сопротивления, тензодатчики, датчики Холла, измерительные трансформаторы, делители напряжения, измерительные усилители, емкостные, индуктивные, индукционные, пьезоэлектрические и многие другие преобразователи, применяются долгие годы, совершенствуются и будут использоваться в обозримом будущем. Более того, идет постоянный поиск новых физических эффектов для построения более совершенных измерительных преобразователей и мер электрических и магнитных величин. Например, эффекты Керра и Зеемана используются соответственно для измерения электрических и магнитных полей, квантовые эффекты Джозефсона и Холла – для создания эталонов напряжения и сопротивления и т.д.

Но вернемся к цифровым электроизмерительным приборам и преобразователям. Рассмотренные выше ЦИП имеют существенный недостаток: большое время измерения (десятки или сотни миллисекунд). Этот недостаток в ряде случаев не является существенным; например, когда оператор считывает результаты измерений с цифрового отсчетного устройства, воспринять показания прибора, обновляющиеся каждую секунду или чаще, он просто не сможет. Однако для регистрирующих приборов или средств измерений системного применения, когда результаты измерений вводятся в ЭВМ, малое быстродействие ЦИП накладывает серьезные ограничения на скорость изменения информативного параметра исследуемого сигнала измерительной информации.

Среди быстродействующих АЦП, используемых для кодирования сигналов измерительной информации, наибольшее распространение получили преобразователи напряжения в код. Рассмотрим историю создания и развития этих преобразователей более детально.

Первые АЦП с высоким быстродействием реализовывали метод последовательного приближения (поразрядного уравновешивания, кодоимпульсный). Становление данного метода было связано с многочисленными попытками автоматизировать работу компенсаторов постоянного напряжения, известных с конца XIX в. и обеспечивающих чрезвычайно малую погрешность измерений (порядка 0,001%). Автоматические компенсаторы не обеспечивали ни требуемого быстродействия, ни сохранения высокой точности; их погрешность в лучшем случае составляла десятые доли процента. Для реализации метода требовалось создание источника компенсирующего напряжения на основе быстродействующего кодоуправляемого делителя эталонного напряжения, быстродействующих электронных ключей с высокими метрологическими характеристиками и электронного компаратора напряжений, который заменил бы в качестве нуль‑индикатора традиционный гальванометр.

Ключи, используемые в кодоуправляемых делителях напряжения, неизбежно снижают их точность. Это связано с тем, что каждый замкнутый ключ имеет нестабильные остаточное сопротивление и ЭДС, а разомкнутый не обладает бесконечно большим сопротивлением. Поэтому еще в 40‑х годах начался поиск схем делителей, точность которых мало зависит от параметров ключей. Прежде всего пришлось отказаться от традиционного последовательного соединения декад, применяемого в компенсаторах постоянного напряжения. В нашей стране еще в 1947 г. О.А. Горяинов и Г.М. Жданов предложили использовать для формирования двоичного кода АЦП параллельное соединение резисторов; в 1949 г. подобную идею использовал B.C. Уманцев.

В 50‑х годах были разработаны более сложные и эффективные схемы делителей, управляемых двоичным или двоично‑десятичным кодом (соответственно для системных АЦП и цифровых вольтметров). В 1956–1957 гг. был получен ряд английских и американских патентов на такие делители, схемы которых систематизировал и детально описал А.К. Саскинд (A.K. Susskind, США, 1958 г.). Некоторые из этих схем, например делитель типа R‑2R (рис. 12.7), широко применяются до настоящего времени.

В качестве ключей в первых кодоимпульсных цифровых вольтметрах использовались реле, что существенно ограничивало их быстродействие и снижало надежность. Такие приборы выпускались до конца 60‑х годов. Последний подобный отечественный цифровой вольтметр типа Щ1512 обеспечивал приведенную погрешность не более 0,01% и имел разрешающую способность 10 мкВ, время измерения составляло 500 мс.

В 60‑х годах в кодоимпульсных вольтметрах начали широко использовать транзисторные ключи. При этом удалось повысить не только быстродействие. и надежность, но и точность приборов. Например, цифровой вольтметр типа DM2023 английской фирмы «Дайнамко» («Dynamco») обеспечивал приведенную погрешность не более 0,006%, имел разрешающую способность 10 мкВ; время измерения составляло 20 мс. Переход от резисторных делителей напряжения к индуктивным позволил еще более увеличить точность. Вольтметр типа DM2010 обеспечивал приведенную погрешность не более 0,001% при времени измерения 440 мс.

 

Рис. 12.7. Функциональная схема ЦАП с делителем типа R‑2R








Дата добавления: 2016-01-30; просмотров: 2381;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.014 сек.