Чувствительность и разрешение ПЗС‑матриц

Сравнение по чувствительности покажет нам преимущества ПЗС‑матриц в отношении видикона и ньювикона, а также в отношении эмульсии пленки.

В фотографии чаще всего используется пленка в 100 ISO, хотя можно приобрести пленку в 200 ISO (в два раза более чувствительную) или 400 ISO (в четыре раза чувствительнее, чем пленка 100 ISO).

Иногда можно даже встретить пленку в 1600 ISO, которая обычно применяется в ситуациях чрезвычайно низкой освещенности (в терминах фотографии).

Можно показать, что средняя черно‑белая ПЗС‑матрица имеет очень высокую чувствительность в сравнении с эмульсией пленки. В ясный солнечный день для типичной пленки в 100 ISO потребуются установки фотокамеры на 1 /125 с и F/16. Если на ту же сцену направить ПЗС‑телекамеру, у которой нормальная выдержка CCIR затвора составляет 1/50 с, то следует использовать объектив примерно с F/1000 (плюс‑минус одно F‑число, так как АРУ телекамеры тоже играет роль). Если мы изменим 1/50 на 1/125 (в 2.5 раза короче), то чтобы получить ту же экспозицию, объектив должен быть раскрыт на 2.5 значения F‑числа шире, чтобы скомпенсировать сокращение времени выдержки. Это даст нам вместо F/1000 примерно F/400 (вы помните F‑числа: 1.4, 2, 2.8, 4, 5.6, 8,11,16, 22, 32, 44, 64, 88, 128, 180, 250, 360, 500, 720, 1000, 1400 и т. д.). Теперь, чтобы перевести чувствительность эмульсии пленки от 100 ISO 1/125 и F/16 к эквивалентным установкам пленки более высокой чувствительности, зная, что чувствительность увеличивается вдвое с удвоением единиц ISO, мы получим изменение диафрагменного числа в 9.5 раз, от F/16 до F/400. Это примерно 29.5 = 720 раз. Итак, средняя чувствительность черно‑белой ПЗС‑матрицы, выраженная в фотографических единицах ISO, равна примерно 100 ISOx720 = 72 000 ISO!

 

 

Рис. 5.13. Принцип работы ПЗС‑телекамеры

 

 

Рис. 5.14. Элемент изображения ПЗС

 

Аналогично мы можем найти, что эквивалентная чувствительность цветной ПЗС‑телекамеры равна примерно 5000 ISO, что тоже немало по фотостандартам.

Химическая (пленочная) фотография постепенно соединяется с электронными камерами. Говоря о компьютеризации фотографических процессов и цифровых технологиях, а также о появлении различных фотостандартов CD, следует отметить, что фотокамеры тоже претерпевают революционные изменения, и мы скоро увидим новые фотокамеры на ПЗС с увеличенной светочувствительностью.

Такие камеры не зависят от ТВ‑стандартов, поэтому нет практически никаких ограничений на число пикселов и соотношение сторон. Даже когда еще только создавалась эта книга, производители начали изготавливать матрицы размером всего 62 мм х 62 мм, с не менее 5120 х 5120 элементов изображения. Как уже упоминалось, все это касается фотокамер, и не стоит их путать с телекамерами для видеонаблюдения.

Спектральная чувствительность ПЗС‑матриц зависит от типа кремниевой подложки, но общая характеристика является результатом фотоэффекта: более длинные волны глубже проникают в кремниевую структуру ПЗС. Имеется в виду красный и инфракрасный свет. Типичная спектральная кривая ПЗС‑матрицы показана на рис. 5.15.

 

 

Рис. 5.15 . Спектральная чувствительность глаза и ПЗС‑матрицы

 

Даже если такое «проникновение» может показаться выигрышным (кажется, что ПЗС‑матрица становится более чувствительна), имеются причины предотвращения проникновения более длинных волн глубоко внутрь матрицы. В частности, такие волны могут быть настолько сильны, что могут генерировать электронные носители в зонах, которые не должны подвергаться воздействию света. В результате в изображении могут пропасть мелкие детали, потому что заряд ячеек растечется по соседним, теряя при этом компоненты высокого разрешения и вызывая «эффект заплывания» (blooming ). Может быть затронута также и масковая зона, предназначенная лишь для временного хранения зарядов и не предназначенная для засвечивания, в результате чего могут в значительной степени возрасти шум и вертикальный ореол (smear ).

Поэтому в усовершенствованных ПЗС‑телекамерах применяются специальные оптические инфракрасные отсекающие фильтры. Эти фильтры представляют собой оптически точные плоскопараллельные пластинки, монтируемые сверху ПЗС‑матрицы. Они ведут себя как оптические низкочастотные фильтры с частотой среза порядка 700 нм, вблизи красного цвета.

Однако, ряд производителей черно‑белых телекамер предпочитает не использовать такие фильтры, чтобы не ослаблять их чувствительность. Это приемлемо в тех случаях, когда предполагается использовать телекамеру в условиях низкой освещенности или в систему входят источники инфракрасного света, однако с теоретической точки зрения телекамера с инфракрасным отсекающим фильтром имеет более высокую разрешающую способность (по сравнению с такой же ПЗС‑матрицей без ИК‑отсекающего фильтра), лучшее отношение сигнал/шум и более естественное преобразование цветного изображения в черно‑белое при не такой уж низкой чувствительности.

 

 

Рис. 5.16. Инфракрасный отсекающий фильтр изменяет характеристику спектральной чувствительности ПЗС‑матрицы

 

В цветных ПЗС‑камерах, напротив, нужно использовать ИК‑отсекающий фильтр, так как спектральная характеристика ПЗС‑матрицы, которая отлична от характеристик человеческого глаза, должна соответствовать спектральной чувствительности человеческого глаза. Это к тому же одна из причин того, почему цветные ПЗС‑камеры менее чувствительны, чем ч/б.

Типичная черно‑белая ПЗС‑матрица без инфракрасного фильтра может дать приемлемый уровень видеосигнала всего на 0.01 лк. Та же телекамера с ИК‑фильтром потребует освещенности на объекте в 0.1 лк.

Современные цветные телекамеры характеризуются минимальной освещенностью на объекте в 2 лк при F/1.4 и дают видеосигнал приемлемого уровня (от 0.3 до 0.5 В).

Развитие ПЗС‑технологии достигло такого уровня, что стало возможно производство матриц с несколькими миллионами пикселов. В цифровой фотографии 6‑мегапиксельные матрицы стали уже привычными, а производители пытаются добиться и большего. Что касается систем видеонаблюдения, то здесь мы ограничены стандартами аналогового телевидения, поэтому сейчас редко встречаются ПЗС‑матрицы с разрешением выше, чем, например, 752x584 пикселов, что дает примерно 400,000 пикселов.

О разрешении и о том, как его измерять, мы подробнее расскажем немного позже, но сейчас хотелось бы остановиться на нескольких очень перспективных решениях, которые, строго говоря, не являются телекамерами для видеонаблюдения, но позволяют получить очень высокое разрешение.

Одно из таких решений было разработано компанией Spectrum San Diego , которое называется SentryScope и позволяет получать изображение с разрешением 21 миллион пикселов. В основе SentryScope лежит линейный ПЗС с 2048 пикселами, который формирует изображение примерно так же, как это делают спутники при фотографировании земной поверхности. В SentryScope используется поворачивающееся зеркало, которое отражает на линейный ПЗС линии формируемого изображения. Поворачивающееся зеркало сканирует широкую область, которая эквивалентна 10,000 пикселов. Эта система не создает видеосигнал как таковой, но позволяет формировать изображение (с помощью ПК) с очень высокой степенью детализации.

 

 

Рис. 5.17. Ч/б ПЗС‑матрица без инфракрасного отсекающего фильтра

 

 

Рис. 5.18. Цветная ПЗС‑матрица с инфракрасным отсекающим фильтром

 

 

Рис. 5.19. Различные типы ПЗС‑матриц

 

Сейчас появилось немало и других интересных решений, позволяющих повысить разрешение. В качестве примера можно привести телекамеру, разработанную компанией Co‑Vi. В этой телекамере используется ПЗС‑матрица с более высоким разрешением, чем обычно (1280x720 пикселов). Полученное изображение высокого разрешения затем масштабируется до стандартного разрешения, чтобы получить аналоговый видеосигнал. Основное отличие предложенного решения заключается в том, что при увеличении участка изображения разрешение не снижается, так как при увеличении фактически "вырезается" часть изображения высокого разрешения (чуть менее 1 миллиона пикселов). Для пользователя это похоже на работу с поворотной телекамерой с двукратным увеличением, что позволяет увидеть больше деталей.

Некоторые разработчики систем видеонаблюдения применяют еще одно интересное решение, в рамках которого используются стандартные телекамеры с длиннофокусными объективами, которые организованы в матрицы 3x3 или даже 4x4 телекамеры и направлены на какой‑то объект таким образом, что поле их зрения друг с другом немного пересекается. Полученные изображения передаются на стену, состоящую из 3x3 или 4x4 мониторов, что дает суммарное разрешение от 3.6 до 6.4 миллионов пикселов. В результате получается очень большое и детализированное изображение, которое можно записать и на обычный цифровой видеорегистратор стандартного разрешения.

 

 

Рис. 5.20. Телекамера Sentry‑Scope с ПЗС‑матрицей и разрешением 21 миллион пикселов позволяет разглядеть очень мелкие детали

 

 








Дата добавления: 2016-01-30; просмотров: 1205;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.012 сек.