Типы переноса зарядов в ПЗС

В отношении способа переноса заряда используемые в видеонаблюдении ПЗС‑матрицы можно подразделить натри группы.

Самый первый проект, относящийся к началу 1970‑х, назывался покадровым переносом (frame transfer ). Такой тип ПЗС‑матриц разделен на две области равного размера – область изображения и маску, одна находится над другой.

 

 

Рис. 5.21. Телекамера от Со‑Vi с матрицей 1280x720 пикселов

 

 

Рис. 5.22. Принцип работы прибора с зарядовой связью (ПЗС)

 

 

Рис. 5.23. Принцип кадрового переноса

 

Область изображения подвергается воздействию света в течение 1/50 с в соответствии с CCIR видеостандартом (1/60 с для EIA). Затем, в течение кадрового синхроимпульса, все сгенерированные светом заряды (электронное представление оптического изображения, спроецированного на ПЗС‑матрицу), сдвигаются вниз на область маски (см. упрощенную схему на рис. 5.24). В общем, весь «кадр изображения» «спускается» вниз.

 

 

Рис. 5.24. Принцип строчного переноса

 

Обратите внимание на перевернутость спроецированного изображения, именно так оно выглядит в реальной ситуации, т. е. объектив проецирует изображение «вверх ногами», и при воспроизведении на видеомониторе нижний правый пиксел попадает в верхний левый угол.

В течение следующих 1/50 с область изображения генерирует электроны нового кадра, а в это время электронные пакеты в области‑маске сдвигаются в горизонтальном направлении, строка за строкой. Пакеты электронов (ток) от каждого пиксела складываются в один сигнал и преобразуются в напряжение, формируя информацию телевизионной строки.

С технической точки зрения более точно было бы называть такую операцию «переносом поля», а не «кадровым переносом», но такой термин использовался с ранних дней разработки ПЗС, и мы примем его таковым, каков он есть.

Первая ПЗС‑матрица была хороша. Она обладала на удивление хорошей чувствительностью в сравнении с ньювиконами и гораздо лучшей чувствительностью, чем видиконы, но появилась новая проблема, неведомая камерам‑трубкам – вертикальное смазывание (или вертикальный ореол) (vertical smearing ). В частности, в период между двумя последовательными экспозициями, когда активен перенос заряда, ничто не мешает свету генерировать дополнительные электроны. Понятно, ведь электронные камеры не имеют механизма механического затвора, как фото‑ или пленочные камеры. И там, где на проекции изображения присутствуют области интенсивного света, появляются яркие вертикальные полосы.

Чтобы разрешить эту проблему, инженеры изобрели новый способ переноса – строчный перенос. Разница заключается в том (см. упрощенный чертеж на рис. 5.24), что экспонируемая картинка переносится не вниз во время периода кадрового синхроимпульса, а сдвигается на левые колонки области маски. Колонки изображения и маски соседствуют друг с другом, перемежаются. Поскольку колонки пикселов маски находятся рядом с колонками пикселов изображения (правее), то сдвиг происходит значительно быстрее, и на генерацию нежелательного сигнала в областях ярких пятен – вертикальный ореол – остается не так много времени.

Если быть точным, вертикальный ореол все равно появляется, но в гораздо меньшей степени. К тому же существенно увеличивается отношение сигнал/шум.

У матриц со строчным переносом зарядов есть один недостаток, который исходит из самой концепции: чтобы добавить колонки‑маски рядом с колонками изображения и разместить все это на площади, равной площади матрицы с кадровым переносом, приходится уменьшать размер светочувствительных пикселов. Это снижает чувствительность матриц. Но в сравнении с получаемыми преимуществами, этот недостаток несущественен.

Еще одно интересное преимущество – это возможность использовать электронный затвор в ПЗС. Это очень привлекательная возможность, ведь естественным временем экспозиции в 1/50 с (1/60 с для NTSC) можно электронным образом управлять и уменьшать до необходимых значений, продолжая выдавать видеосигнал размахом 1 Vpp.

Вначале для ПЗС‑матриц со строчным переносом предлагалось использовать ручное управление электронным затвором, но очень скоро появилась и автоматическая версия. Такой тип управления называется автоматической ПЗС‑диафрагмой или электронной диафрагмой (electronic iris ).

Электронная диафрагма устраняет необходимость в использовании объективов с автодиафрагмой.

Объективы с ручной установкой диафрагмы могут использоваться с телекамерами с электронной диафрагмой даже в уличных условиях (Далеко не во всех случаях, так как динамического диапазона электронного затвора может быть недостаточно для отработки изменений уличного света. Прим. ред .). Однако следует отметить, что электронная диафрагма не может контролировать функцию глубины резкости, обеспечиваемую механической диафрагмой объектива. И следует также помнить, что, когда электронная диафрагма переключается на более высокие скорости затвора, из‑за низкой эффективности переноса заряда возрастает вертикальный ореол.

 

 

Рис. 5.25. Сравнение традиционных схем с микролинзами и новой концепции Exwave фирмы Sony

 

 

Рис. 5.26. Структура ПЗС‑матрицы с микролинзами, фотография сделана электронным микроскопом

 

Итак, если включен электронный затвор, он может переключаться в пределах от нормальной скорости экспозиции в 1/50 с (1/60 с) до более высокой (менее продолжительной) в зависимости от условий освещенности. Теоретически экспозиции, длиннее 1/50 с (1/60 с для EIA), не могут использоваться из‑за потери ощущения движущегося изображения. В некоторых ПЗС‑телекамерах возможны более длительные экспозиции, и такой режим называется интеграцией (накоплением заряда. Прим. ред. ). В некоторых последних разработках, включающих цифровую обработку сигнала, интеграция включается автоматически, когда освещенность объекта падает ниже заданного уровня. Это особенно ценно в отношении цветных телекамер, но пока реализовано только для черно‑белых телекамер (В современных цветных телекамерах с целью повышения их чувствительности реализован режим День/Ночь, благодаря чему при уменьшении освещенности ниже определенного уровня телекамера автоматически переключается на работу в черно‑белом режиме. Прим. ред. ). Плата за это – потеря гладкости движения (в режиме накопления мы не можем получить 50 полей/с), которая заменяется видимостью движения, аналогичной прерывистому воспроизведению с time‑lapse видеомагнитофона.

Уменьшение размеров пиксела в матрицах со строчным переносом косвенно снижает минимальную освещенность матрицы. Эта проблема может быть разрешена очень просто (хотя технологически это не очень легко) – поверх каждого пиксела помещается микролинза. Микролинза концентрирует весь падающий свет на маленькую область, на сам пиксел, и эффективно увеличивает минимальную освещенность. На сегодняшний день наибольшее распространение в видеонаблюдении получили матрицы со строчным переносом заряда.

Типичный разрез ПЗС‑матрицы со строчным переносом и с микролинзами приведен на рис. 5.27.

 

 

Рис. 5.27 . Типичная структура ПЗС‑матрицы с микролинзами

 

Как видно, микроструктура матрицы становится довольно сложной, когда речь идет о высококачественном сигнале.

Самый лучший проект – это последняя разработка, матрица с кадрово‑строчным переносом, которая обладает всеми характеристиками строчного переноса плюс уменьшение вертикального ореола и лучшее отношение сигнал/шум. Как можно заключить из упрощенной схемы, такая матрица работает со срочным переносом на верхней части матрицы, то есть имеет электронный затвор, но изображение не удерживается в колонках маски в течение экспозиции следующего поля, а сдвигается вниз в более защищенную область маски.

В такой матрице вертикальный ореол еще меньше, а также увеличивается отношение сигнал/шум.

Здесь также используются микролинзы для улучшения минимальной освещенности. ПЗС‑матрицы с кадрово‑строчным переносом заряда имеют еще более совершенную микроструктуру, множество ячеек и областей для предотвращения стекания избыточных зарядов на окружающие области, ловушки генерируемых теплом электронов и пр.

Матрицы с такими усовершенствованиями обладают очень высоким динамическим диапазоном, ослабленным вертикальным ореолом и высоким отношением сигнал/шум, что делает их идеальными для съемок на улице и видеожурналистики. Такие типы камер в широковещательном телевидении обычно называются камерами видеожурналистики.

Итак, матрицы с кадрово‑строчным переносом для видеонаблюдения слишком дороги, и, в основном, используются в широковещательном ТВ.

Следует отметить, что независимо от того, насколько совершенна электроника телекамеры, если качество источника информации – ПЗС‑матрицы – очень высокое, то и телекамера будет высшего качества. Противоположное тоже верно, т. е. даже если ПЗС‑матрица наивысшего качества, но электроника камеры не в состоянии обработать ее наилучшим возможным способом, то весь комплект будет комплектом второго класса.

Также следует отметить, что большинство из немногочисленных производителей матриц подразделяют ПЗС‑устройства одного типа на несколько классов, в зависимости от качества и однородности пикселов. Различные производители могут использовать различные классы для одного и того же типа матриц. Это в итоге отражается не только на качестве, но и на цене телекамеры.

 

 

Рис. 5.28. ПЗС‑матрицы могут иметь самые разные размеры

 

 








Дата добавления: 2016-01-30; просмотров: 1231;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.01 сек.