Популяционная физиология

 

В 30‑х гг. нашего века было признано, что учение Ч. Дарвина и генетика не исключают друг друга, а составляют части единого универсального целого. В сущности, соединение популяционной генетики с теорией естественного отбора составило основу синтетической теории эволюции или, если иметь в виду различия взглядов в рамках этой теории, – общей теории, объединенной таким названием.

Успехи теории грандиозны. Однако следует обратить внимание на то обстоятельство, что она, объединяя ряд важнейших достижений биологических наук, не касается физиологии. Ни физиология, ни физиологические подходы этой теорией не используются. (Исключение составляет, пожалуй, понятие вида, которое включает в себя не только структурные, но и функциональные признаки, в частности возможность размножения). Возможно, это связано с тем, что концепции эволюции функций и функциональной эволюции достаточно совершенны. Тем не менее уже сейчас отчетливо видны те проблемы, которые требуют для своего решения новых нетрадиционных подходов. Так, чаще всего появляются высказывания о необходимости нового синтеза. Физиологи не без оснований полагают, что следующий важный шаг в развитии эволюционной теории будет связан с влиянием функциональных подходов на комплекс идей, использовавшихся до сих пор. Быстрое развитие таких подходов в физиологии и ряде других наук, так или иначе изучающих функцию, усиливает эту надежду. Идея нового синтеза, связанного с большим значением функциональных подходов, предполагает их необходимость для эволюционных построений, так же как в свое время были необходимы морфологические, а затем биохимические подходы.

В своей известной книге «Биохимическая эволюция» М. Флоркэн (1947) указывал, что эволюционная биохимия служит основой для создания более точной биологической систематики, чем морфологическая систематика, а также для конструирования более обоснованного филогенетического древа, чем древо, сделанное на основе морфологических сведений. Таким образом, эволюционная биохимия вступила в спор с другими биологическими науками и продемонстрировала свое право решать общие вопросы теории эволюции.

В качестве другого примера можно привести III Международный конгресс по систематике и эволюционной биологии, который был назван «Молекулы против морфологии». В частности, на этом конгрессе на основании анализа аминокислотных последовательностей в миоглобине и а‑гемоглобине утверждалось, что птицы более тесно связаны с млекопитающими, чем было принято считать ранее.

Для включения физиологии в ткань других наук необходимо, чтобы она обслуживала эти науки. Поэтому физиологам, как и биохимикам, важно заявить о том, что физиология претендует на участие в построении системы на основании физиологических признаков с применением функциональных подходов. Кроме того, физиология может и должна принимать участие в объяснении ряда явлений всеобщности.

Я полагаю, что будущая теория эволюции будет основываться не только на популяционной генетике и теории естественного отбора, но и на понимании функциональных характеристик организмов и популяций. В то же время в физиологии до сих пор не были использованы представления о популяционных механизмах. Вероятно, это связано с тем, что физиология является организменной наукой. Между тем если проанализировать некоторые закономерности популяционной генетики, то оказывается, что они применимы к физиологии вообще и, что очень важно, к физиологии функциональных блоков. Причем такой подход весьма плодотворен.

Обязательным условием развития эволюционной физиологии является формирование физиологической генетики популяций, или популяционной физиологии, – науки, которую иногда ошибочно понимают как физиологию популяций. Если речь идет о свойствах больших или малых групп животных, о взаимоотношениях членов популяций, то я полагаю, что этот раздел физиологии должен быть обозначен как физиология популяций. По существу она становится частью экологической физиологии. В отличие от этого вариабельность физиологических свойств у членов одной популяции или вида должна характеризоваться как популяционная физиология.

В основу популяционной физиологии следует положить хорошо обоснованные посылки, заключающиеся в том, что физиологические, биохимические и биофизические признаки подвержены широкой индивидуальной вариабельности. Такая вариабельность отчасти является фенотипической, отчасти генотипической. Если вариации функциональных признаков и в конечном итоге биологических эффектов обладают определенной селективной ценностью, то следует ожидать, что некая часть популяции получит преимущества и большие шансы на оставление потомства. Такими признаками могут быть эффективность усвоения различных пищевых веществ, скорость деградации белков, регуляция различных компонентов диуреза и т.д. Вариации могут касаться как исполнительных органов, так и управляющих ими систем. В качестве примера рассмотрим несколько признаков, функциональная ценность которых не вызывает сомнений.

При анализе гликемической кривой у человека после нагрузки глюкозой, отражающей повышение уровня глюкозы в крови в связи с ее всасыванием, а также нормализацию в результате действия механизмов гомеостатирования, обнаружена широкая вариабельность (рис. 42). Эта вариабельность касается как восходящей части кривой, зависящей от скорости всасывания глюкозы, так и нисходящей ее части, зависящей от скорости депонирования всосавшегося сахара. Подобная вариабельность относится к индивидуальным вариациям, вероятно не имеющим селективной ценности у человека. Однако у животных некоторые вариации уровня глюкозы в крови, возможно, могут служить признаком нарушения гомеостаза. В этом случае представители популяции, характеризующиеся чрезмерной гипергликемией, в ходе естественного отбора будут элиминироваться. Однако при переходе на преимущественно углеводную диету, состоящую из сахаров, их ускоренная ассимиляция может сопровождаться развитием диабетоидных явлений именно у этой части популяции.

В качестве примеров вариабельности характеристик желудочно‑кишечного тракта можно привести различия в желудочной секреции на пищевые вещества у разных животных, в кислотности желудочного сока, в его протеодитической активности и т.д.

 

 

Рис. 42. Изменения уровня глюкозы в крови после пероральной нагрузки глюкозой на фоне относительного покоя пищеварительного аппарата (сплошная линия) и предварительной стимуляции мясным завтраком (пунктирная линия) у здоровых лиц.

По оси абсцисс – время (мин); по оси ординат – изменение уровня глюкозы (мг%) после глюкозной нагрузки по сравнению с исходным уровнем, принятым за 0.

 

На протяжении более 20 лет мы исследовали характеристики мембранного пищеварения и транспорта нутриентов у животных различных видов, в частности у нескольких линий крыс, у кроликов, морских свинок, собак, кошек и др. В пределах каждого вида и каждой линии, в особенности при сравнении различных линий, отмечены значительные вариации. Анализ накопленной информации показал, что варьируют такие характеристики, как скорость гидролиза мальтозы, сахарозы, крахмала, три‑ и дипептидов, всасывание продуктов гидролиза этих субстратов, а также всасывание глюкозы, фруктозы, аминокислот и т.д., т.е. фундаментальные процессы, реализуемые механизмами, сформированными еще на заре жизни. Вариабельность может быть индуцирована гормонами, типом питания, перераспределением функциональных свойств вдоль тонкой кишки, возрастом, температурой окружающей среды, стрессорными и другими экстремальными воздействиями. Варьирование распределения ферментных и транспортных систем вдоль тонкой кишки служит примером вариабельности функциональных активностей в пределах органа. Эти вариации существенно влияют на переваривание и всасывание пищевых веществ вдоль тонкой кишки.

В то же время вариабельность резко уменьшается или исчезает при изучении систем на молекулярном уровне. Действительно, в подавляющем большинстве случаев кипетические характеристики ферментных и транспортных систем (Км, Kt, Vмакс, Jмакс) остаются неизменными. Следовательно, физиологические особенности скорее обусловлены пространственными и временными сочетаниями функциональных блоков, чем молекулярными структурами. Если это так, то становится попятным, что при естественном отборе скорее будут отбираться новые сочетания стандартных функциональных блоков, а не сами блоки. Таким образом, свойства молекулярных машин значительно более стабильны, чем распределение этих свойств, например вдоль тонкой кишки. В этом смысле изучение прокси‑модистальных градиентов особенно показательно.

Существует обширная литература, свидетельствующая, что расщепление различных пищевых веществ и их последующее всасывание происходят вдоль тонкой кишки неравномерно. В частности, активность сахаразы, максимальная в средних отделах кишки, снижается в проксимальном и особенно дистальном направлениях. Такой градиент больше выражен у белых крыс и слабее, например, у кроликов. Другие ферменты имеют иную топографию. Следует обратить внимание, что уровень ферментативных активностей во всех отделах тонкой кишки подвержен более или менее выраженным вариациям. Эти вариации, как показано в нашей лаборатории, в определенной мере зависят от возрастных, сезонных и других особенностей, от функционального состояния организма и т.д. (рис. 43). В тоже время многие вариации иптерпретируются как индивидуальные. Их амплитуда минимальна у линейных крыс и максимальна у беспородных белых крыс. Крысы быстро занимают промежуточное положение. Так как распределение ферментативных и транспортных функций вдоль тонкой кишки имеет приспособительный характер, то при естественном отборе, связанном с эффективностью питания, определенные вариации проксимо‑дистального градиента могут оказаться доминирующими. В то же время другие будут элиминированы. Таким образом, вариабельность проксимодистальных градиентов в этом случае служит материалом для естественного отбора.

 

 

Рис. 43. Распределение‑сахаразной активности вдоль тонкой кишки крыс различных возрастных групп.

По оси абсцисс – длина тонкой кишки (см); по оси ординат – активность сахаразы (% гидролизованного субстрата за время инкубации, за 100 принята максимальная сахаразная активность в каждой возрастной группе животных). 1 – 20, 2 – 24, 3 – 27, 4 – 60 суток постнатального развития животных.

 

Наконец, еще одним примером вариабельности может служить репрессия лактазы. Как упоминалось выше, при переходе от молочного к дефинитивному питанию у многих млекопитающих наблюдается резкая, а иногда и полная репрессия лактазы. У некоторых животных наблюдается практически полная репрессия этого фермента, у других она составляет 60–90%. Репрессия лактазы варьировала в широких пределах и в наших экспериментах на крысах. По всей вероятности, при некоторых условиях недостаточная репрессия лактазы превращается в полезный признак. Это может наблюдаться в том случае, когда молочный сахар в составе молока становится важным пищевым продуктом для взрослого организма. Тогда преимущества получает та часть популяции, у которой репрессия фермента выражена слабо. Возможно, именно таков механизм ослабления репрессии у тех человеческих популяций, в ранней истории которых существовала развитая молочная культура.

Итак, благодаря неоднородности популяции при изменении условий одна ее часть получает преимущества, тогда как другая становится объектом элиминации. Весьма существенно, что варьирование физиологического признака в популяции служит основой для микроэволюции вида и, возможно, для макроэволюции.

Взаимоотношения микро‑ и макроэволюции. Длительное время в качестве одного из важнейших механизмов эволюции рассматривался механизм преадаптации, т.е. приспособления, которое возникает ранее, чем появляются условия, делающие это приспособление полезным признаком. С точки зрения физиологии преадаптация – это побочный эффект некоторой сложной функции и осуществляется одним из существующих функциональных блоков. На основе концепции универсальных функциональных блоков можно объяс‑нить происхождение ряда функций, которые казались трудно объяснимыми или необъяснимыми.

Прогрессивная эволюция, в том числе макро‑ и мегаэволюция, может быть интерпретирована как результат формирования новых систем на основе уникальных комбинаций универсальных функциональных блоков. Это позволяет подойти к «функциональному» решению одного из самых трудных вопросов современной эволюционной теории – переходу от микро‑ к макроэволюции. Смысл предложенной мною гипотезы заключается в том, что благодаря вариабельности функций и функциональных эффектов, которая соответствует масштабам микроэволюции, могут наблюдаться биологические эффекты, характерные для макроэволюции. В дальнейшем это приводит к изменению скорости эволюционного процесса и к изменению характера давления естественного отбора.

Проиллюстрируем выдвинутые положения некоторыми примерами. Один из таких примеров связан с неидеальным распределением продуктов синтеза биологически активных белков между различными частями клеточной мембраны. Так, около 40 % гликопротеинов достигают апикальной мембраны кишечных клеток непосредственно из аппарата Гольджи, а около 60 % – с «заходом» в базолатеральную мембрану. Такой механизм дискутируется и в случае сахаразно‑изомальтазного комплекса (рис. 44). Другие мембранные белки, как, например, Na+,K+‑ATФaзa, также могут быть обнаружены не только в базолатеральной мембране – типичном месте локализации этого насоса, но и в апикальной. Не исключено, что необычная локализация соответствующих биологически активных молекул у определенной части популяции может быть причиной формирования новых функций.

 

Рис. 44. Схема предполагаемого встраивания в апикальную мембрану кишечной клетки, интрацеллюлярного пути и поверхностного процессинга вновь синтезированного сахаразно‑изомальтазного комплекса.

СИ – сахаразно‑изомальтазный комплекс; И – изомальтазный домен (в предшественнике, или в про‑СИ) или изомальтазная субъединица (в СИ); С – сахаразный домен (в предшественнике, или в про‑СИ) или сахаразная субъединица (в СИ); N'–N‑конец цепи; N–N‑конец постулированной сигнальной последовательности; с – С‑конец цепи; СП – сигнальная пептидаза; Э – панкреатические протеазы (например, эластаза); ? – не установлено, переносится ли про‑СИ в мембрану микроворсинок непосредственно из аппарата Гольджи или через базолатеральную мембрану.

 

Далее, в соответствии с современными представлениями, существуют потоки веществ, направленные из полости тонкой кишки во внутреннюю среду организма (т.е. потоки всасываемых веществ), а также потоки из внутренней среды в полость кишки (т.е. потоки экскретируемых или секретируемых веществ). Изменение соотношения этих потоков в пределах популяции может приводить к развитию особей, у которых преобладает или всасывание определенных компонентов, или их экскреция. Например, если механизм секреции Сl включается в апикальную мембрану кишечной клетки, то происходит изменение ее специализации: из элемента, всасывающего воду и соли, она становится элементом их выделения (рис. 36). Такое изменение направления потоков имеет место при диарее различной этиологии. Таким образом, несмотря на изменение соотношения лишь двух типов потоков, происходит формирование систем, имеющих полярное биологическое значение. Следовательно, в ходе эволюции возможен переход таких диаметрально противоположных функций, как всасывание и секреция, всасывание и экскреция путем перемещения универсальных функциональных блоков в пределах клетки (см. 6.3.4).

Нам удалось также найти ряд примеров быстрых макроэволюционных сдвигов, основанных на смещении одного или двух функциональных блоков в каудальные отделы кишечной трубки насекомых и рыб.

Наконец, в последнее время при изучении ассимиляторных процессов у млекопитающих в онтогенезе было обнаружено, что срок перехода от молочного к смешанному питанию сильно варьирует. Эти вариации оказывают существенное влияние на формирование растущего организма.

Итак, гетерогенность популяции по распределению универсальных функциональных блоков и по их комбинаторике – важнейший механизм прогрессивной эволюции. Эта эволюция частично отражает различия в генетической информации, а частично – фенотипические дивергенции.

Таким образом, изучение вариабельности физиологических признаков и популяционного фонда функциональных блоков может оказаться столь же плодотворным для понимания эволюции функций, как и популяционный подход для характеристики эволюции структурных признаков (как морфологических, так и биохимических). Значительная вариабельность в пределах популяции какого‑либо признака (например, секреция, скорость всасывания, соотношение различных ферментов, их распределение между клеточными органеллами и т.д.) означает, что биологическая система построена не идеально и многие признаки не имеют определенного физиологического значения. При этом побочные эффекты являются обязательным атрибутом каждого биологического процесса. В ходе эволюции достигается

Некоторое равновесие между полезными биологическими эффектами, побочными эффектами и биологической стоимостью каждой функции.

Таким образом, отсутствие идеальных биологических систем – следствие лежащего в основе эволюции такого технологического принципа, как принцип эффективности. Он основан на существовании полезных и побочных эффектов, а также отрицательного эффекта, обозначаемого как метаболическая, или биологическая, стоимость функции (структуры). Принцип эффективности и входящие в него частные закономерности могут быть применены для анализа многих общих закономерностей. Следовательно, технологические особенности организации различных систем, в том числе экологических, по‑видимому, определяются технологичностью самой эволюции.

 

***

 

Итак, за немногими исключениями можно обнаружить, что самые примитивные и самые совершенные организмы используют близкие или идентичные по своей молекулярной и функциональной архитектуре функциональные блоки. Особенно сходны функционально активные части таких блоков, что проливает свет на основные закономерности эволюции. Под этим подразумевается идентичность функционально значимых частей блоков и меньшее сходство функционально индифферентных частей.

Идентичность или близость первичных структур в одноименных функциональных блоках исключает конвергенцию как механизм сближения функциональных свойств. Имеющаяся информация говорит, что главный путь эволюции – это комбинаторика. В ходе эволюции на основе некоторого набора функциональных блоков, сформировавшихся на начальных этапах эволюции, возникали новые, иногда принципиально новые системы. Это не означает, что функциональные блоки не менялись. Тем не менее основной путь формирования сложных функциональных комплексов на уровне клеток, тканей, органов и систем происходил в результате комбинации функциональных блоков в комплексы первого, второго, третьего и более высоких порядков. Рекомбинация функциональных блоков всегда достигается изменением набора блоков, их соотношении, взаимодействий в пространстве и времени и т.д. Именно так происходит превращение секреторной клетки во всасывающую, т.е. клетки, обеспечивающей сохранение воды, в клетку, обеспечивающую сохранение солей.

Общность на уровне элементарных функций и функциональных блоков является продолжением той общности, которая ранее была обнаружена на уровнях атомного состава и простых органических молекул, служащих строительными блоками. Такое единство – предпосылка для взаимодействия отдельных компонентов экосистемы и биосферы. Суть и причина единства заключаются в том, что для циркуляции веществ и жизни на планетарном уровне необходимы трофические цепи. Для формирования трофических круговоротов и трофических цепей обязательно единство элементарной структуры. Однако для жизни необходимо, чтобы макроструктура была бы также близкой или идентичной, так как усвоение пищи предполагает, что гидролизуемые связи во всех случаях одинаковы.

Возникает вопрос, не противоречит ли концепция функциональных блоков представлениям об эволюции на молекулярном и близком к нему уровнях? Однако в этой связи следует отметить, что возможность рекомбинаций функциональных блоков можно справедливо рассматривать как эволюционный процесс, поразительный по богатству своих возможностей. Примером этому служит эволюция генетического аппарата и других информационных систем, где рекомбинация становится основным механизмом. В ряде случаев идея о существовании универсальных функциональных блоков не только не отвергает их изменений, но и постулирует ускоренную эволюцию. Эта же идея позволяет понять случаи поразительного консерватизма некоторых молекул или их частей на протяжении огромных отрезков времени. Наконец, единство функциональных блоков реализуется на уровне экосистем. Если бы не существовало подобного единства, то члены одного и того же сообщества были бы разобщены, а существование сообщества было бы невозможно.

Сравнительная физиология свидетельствует, что общность функциональных блоков не только обеспечивает трофические взаимодействия, но и превращает сообщества организмов в единые взаимодействующие системы. Вместе с тем такая общность служит причиной, из‑за которой человек становится особенно опасным противником природы. Полагая, что выработанное им ядовитое вещество действует лишь на растения или животные одного вида, человек часто оказывает огромный вредный эффект на растения или животные многих других видов, нанося неисчислимый экологический ущерб. Следовательно, концепция универсальных функциональных блоков позволяет понять особенности современного мира и природы, а также взаимоотношения человека и природы.

Наконец, становится ясно, что физиология должна перейти к изучению более высоких иерархических уровней, чем организм, т.е. к популяционному, экосистемному и биосферному. В конечном итоге будут сформированы две области физиологии: 1) физиология популяций, которая должна стать важной частью экологической физиологии; 2) популяционная физиология, рассматривающая варьирование физиологических признаков и свойств популяциониого генофонда и фонда функциональных блоков, а также их изменения под влиянием различных эволюционных факторов.

 

 

Глава 7








Дата добавления: 2016-01-26; просмотров: 964;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.013 сек.