УНИВЕРСАЛЬНЫЕ ФУНКЦИОНАЛЬНЫЕ БЛОКИ КАК ОСНОВА ОРГАНИЗАЦИИ СЛОЖНЫХ ФУНКЦИЙ
Анализ процессов пищеварения и транспорта на современном уровне и в особенности эволюции этих процессов открывает новые горизонты для понимания принципов организации сложных биологических систем и физиологических функций. В этой главе рассмотрен один из наиболее фундаментальных принципов естественных технологий – принцип блочности (см. также гл. 8). Долгое время я обдумывал этот принцип и подвергал его сомнению. Потребовались многократные повторения фактов, для того чтобы принцип организации сложных биологических систем на основе комбинирования ограниченного числа универсальных функциональных блоков перестал мне казаться противоречащим неисчерпаемому многообразию живых систем и их индивидуальной и эволюционной адаптивности. Более того, при построении взаимодействующих различными способами биологических систем лишь блочная организация дает им возможность существовать длительное время. Следует иметь в виду, что принцип блочности основан на экспериментальных данных, а не на чисто теоретических предпосылках. Поэтому целесообразно сопоставить факты, которые неизбежно приводят к выводу, что в основе организации всех живых систем и реальных физиологических функций, а также их эволюции лежит комбинирование универсальных функциональных блоков, реализующих различные элементарные функции и операции.
Любой физиологический процесс состоит из определенной последовательности событий, которые в большинстве случаев могут быть разделены на более простые операции. В конце концов мы подойдем к таким
операциям, или функциям, которые могут быть рассмотрены как элементарные. Современная революция в биологии позволила понять элементарные функции специализированных клеток и приблизиться к пониманию и расшифровке болезней сердца, пищеварительных органов, эндокринных желез, легких, почек, мозга и т.д. Одно из таких направлений, которое можно обозначить как частную молекулярную физиологию, привело к развитию концепции универсальных функциональных блоков как основе построения специализированных систем и эволюции функций.
Концепция универсальных функциональных блоков. Общие положения
Суть концепции, охарактеризованной мною в 1985 г., сводится к следующему.
1. Различные функции, в том числе специализированные, выполняемые клетками различных тканей и органов высших организмов, складываются из элементарных функций, реализуемых определенными комбинациями ограниченного числа функциональных блоков – молекул или надмолекулярных комплексов. Эти стандартные блоки, сочетаясь между собой и распределяясь в разных количественных соотношениях и в разных отделах клеток и органов, обеспечивают их специализацию.
2. Эволюция одноименных структур связана с перераспределением функциональных блоков, которые близки или идентичны у организмов, стоящих на разных уровнях эволюционной лестницы.
3. Изменения функциональных эффектов клеток и органов также связаны с перераспределением функциональных блоков.
Для понимания функций звено, обозначаемое как функциональный блок, имеет фундаментальное значение. В первом приближении может быть выделено несколько типов функциональных блоков: 1) транспортные блоки, т.е. блоки, участвующие в переносе различных молекул: насосы, каналы, мобильные переносчики, связывающие белки и т.д.; 2) энергизирующие блоки, т.е. системы, снабжающие энергией эффекторные блоки, выполняющие транспортные, сократитель‑ные или рецепторные функции; 3) ферментные блоки, т.е. структуры, реализующие гидролитические функции; 4) сократительные блоки, т.е. блоки, способные к изменению длины или положения относительно других блоков, например в актомиозиновом комплексе; 5) рецепторные блоки, которые во многих случаях имеют олигомерную структуру и состоят из нескольких первичных блоков – акцепторного, медиирующего и транслирующего; нередко существуют интегрирующие блоки, обеспечивающие соединение перечисленных блоков; 6) специализированные химические сигналы – гормоны, нейротрансмиттеры, медиаторы, которые могут быть также рассмотрены как специализированные блоки; 7) комбинированные блоки высшего порядка, которые могут быть образованы из одного или нескольких функциональных блоков более низкого иерархического уровня, или порядка (например, натриевый насос, в сущности являющийся олигомерным комплексом); 8) специально организованные системы функциональных блоков, выполняющие «сложные элементарные» специализированные функции (например, эндо‑ и экзоцитозы).
Структура функциональных блоков в одних случаях представляет собой молекулы, в других – надмолекулярные комплексы, а иногда несколько самостоятельных, хотя и взаимосвязанных молекул. Функциональным блоком может быть и часть определенной молекулы, например каталитический домен фермента. Для реализации некоторых элементарных функций (например, рецепторных, ферментативных, антигенных) достаточно небольших участков молекул – доменов. Для проявления ряда других функций (например, эндо‑ и экзоцитозов) требуется значительное число различных молекул, организованных определенным образом. Следовательно, функциональный блок – это структура, связанная с функцией, т.е. понятие физиологическое.
Благодаря развитию молекулярной биологии и исследованиям физиологии и биохимии отдельных систем на клеточном и молекулярном уровнях появились сведения, что различные высокоспециализированные функции – всасывание, секреция и др. – реализуются с помощью сходных или даже идентичных функциональных блоков. Функциональная и структурная близость таких блоков обнаружена у организмов, стоящих на различных ступенях эволюционной лестницы. Эго противоречит доминирующему ранее мнению, что специализированные функции являются результатом деятельности молекулярных машин, приспособленных для реализации именно этих функций. В пользу такой точки зрения принято приводить органную и клеточную специфичность белков, огромное число изоферментов, изогормонов и т.д. Согласно развиваемой концепции, уникальные выоокоспециализированные системы, осуществляющие определенные функции, состоят из универсальных блоков. Высокая эффективность, специфичность и функциональное своеобразие таких систем в конечном итоге достигаются в результате сочетания блоков в пространстве и времени. Такой принцип организации функционирования в биологии является одним из наиболее распространенных. Он, в частности, лежит в основе первичной структуры белков, нуклеиновых кислот, углеводов и т.д. Функциональные блоки, реализующие как общие, так и специализированные функции, в сущности стандартны и их число сравнительно невелико.
Идентификация некоторых элементарных функций и осуществляющих их структур, казалось бы, подтверждала бесконечную изменчивость функциональных блоков, из которых собирались такие сложные специализированные системы, как секреторная или пищеварительно‑всасывательная клетки. Однако исследование последних и сравнение их функциональных блоков с блоками других специализированных клеток показало, что кишечные клетки не содержат ни одного уникального функционального блока. Рассмотрим работу кишечной клетки, которая при сегодняшнем уровне знаний представляется чрезвычайно сложной технологической системой.
Кишечная клетка
Схема кишечной клетки представлена на рис. 26. Известно, что численность кишечных клеток составляет 1010, а соматических клеток взрослого человека– 10 15. Следовательно, одна кишечная клетка обеспечивает питание около 100 000 других клеток. Такая эффективность, вероятно, не имеет аналогий в производственных технологиях. На первый взгляд клетка кажется сверхспециализированной и приспособленной к выполнению именно пищеварительных и транспортных функций. В плане нашей задачи особый интерес представляет структурно‑функциональная организация апикальной поверхности кишечных клеток, т.е. поверхности, обращенной в полость тонкой кишки.
Рис. 26. Схема кишечной клетки.
1 – терминальная сеть; 2 – микротрубочки; 3 – свободные рибосомы; 4 – латеральная мембрана; 5 – базальная мембрана; 6 – межклеточное пространство; 7 – аппарат Гольджи; 8 – гладкий ретикулум; 9 – гранулярный эндоплазматический ретикулум; 10 – лизосомы; 11 – десмосома; 12 – плотный контакт; 13 ‑ микроворсинки.
Щеточная кайма. Характерная особенность кишечной клетки заключается в наличии щеточной каймы, образованной микроворсинками – плазматическими выростами, ограниченными мембраной. Щеточная кайма является универсальной структурой, свойственной клеткам самых различных животных, а также человека. На апикальной поверхности каждой кишечной клетки находится около 3000–4000 микроворсинок; на 1 мм2 поверхности кишечного эпителия приходится до 50– 100 млн. микроворсинок. У человека и других млекопитающих высота микроворсинок в среднем составляет 1 мкм, диаметр в 10 раз меньше (около 0.1 мкм),хотя у низших позвоночных, включая амфибий, микроворсинки могут быть и длиннее. Наименьшее расстояние между микроворсинками – 15–20 нм. Благодаря микроворсинкам поверхность тонкой кишки увеличивается примерно в 40 раз, что способствует включению в мембрану значительного количества различных ферментативно активных и транспортных белков.
Гликокаликс. Внешняя поверхность плазматической мембраны большинства клеток, в том числе кишечных, покрыта гликокаликсом. Последний является компонентом мембраны и образует на апикальной поверхности кишечных клеток слой толщиной до 0.1 мкм. Гликокаликс состоит из мукополисахаридных нитей, или филамент, связанных кальциевыми мостиками и образующими особую сеть. Он обеспечивает не только механическую прочность плазматической мембраны. Благодаря лабильности кальциевых мостиков связи между отдельными филаментами периодически разрушаются, что способствует проникновению относительно крупных молекул в глубину гликокаликса. Так как кислотные остатки гликокаликса имеют отрицательный заряд, то проникающие ионы и диполи будут определенным образом ориентироваться по отношению к гликокаликсу. Таким образом, гликокаликс представляет собой молекулярное сито, сепарирующее молекулы по величине и заряду, имеет отрицательный заряд, характеризуется значительной гидрофильностью и придает процессам переноса пищевых веществ векторный и селективный характер.
Гликокаликс определяет ряд других важнейших функций клеток: «узнавание», связь молекул определенных типов (т.е. специализированные акцепторные и рецепторные функции), иммунологическое дифференцирование, межклеточные взаимодействия и т.д. По‑видимому, он играет роль в связывании поверхностного слоя слизи. Гликокаликс является не только диффузионным барьером, препятствующим проникновению бактерий, но и специфическим барьером, определяющим проницаемость пищевых веществ. Благодаря ему апикальная мембрана практически недоступна для высокомолекулярных соединений типа ксенобиотиков. В то нее время гликокаликс обеспечивает высокую проницаемость для молекул пищевых веществ, так как в его пространстве адсорбированы пищеварительные ферменты панкреатического происхождения.
От состояния гликокаликса и содержащихся в нем ферментов могут зависеть многие нарушения функций желудочно‑кишечного тракта. В частности, нарушение адсорбции панкреатических ферментов имеет значение в формировании явлений малнутриции, а атрофия гликокаликса может явиться причиной повреждающего действия токсических агентов химуса на липопротеиновую мембрану.
Быстрое обновление гликокаликса обеспечивает эффективное функционирование щеточной каймы как пористого реактора, так как благодаря сбрасыванию «зрелого» гликокаликса создается своеобразный эффект постоянной очистки пор. Недавно показано активное сбрасывание гликокаликса в результате активации фибриллярных структур микроворсинок терминальной сети.
Следует подчеркнуть, что гликокаликс представляет собой универсальную структуру и встречается у клеток всех организмов от амебы до человека, включая эритроциты и нейроны. В то же время гликокаликс характеризуется вариабельностью свойств не только в клетках разного типа, но и в одной клетке. Например, он сильно развит на апикальной поверхности микроворсинок кишечных клеток, менее – на их латеральной поверхности и лишь биохимически (но не структурно) определяется на базальной мембране.
Актомиозиновый комплекс. Сократительные структуры характерны для возбудимых тканей (мышечной и нервной) и контролируют форму клеток. Однако оказалось, что эти структуры присутствуют в самых различных клетках. Недавно некоторые блоки сократительной системы описаны в невозбудимых клетках, и в том числе в кишечных.
На рис. 27 представлена сократительная система апикальной части кишечной клетки. Как можно видеть, сердцевина микроворсинки занята фибриллярными структурами, которые достигают апикальной области цитоплазмы, где сливаются с поперечной фибриллярной структурой – терминальной сетью. Последняя, согласно существующим представлениям, выполняет функцию опоры для щеточной каймы, принимает участие в регуляции подвижности мембраны, а также разделяет клетку на два компартмента – щеточнокаемный и цитозольный.
Рис. 27. Схема мембраны микроворсинок и апикальных соединительных комплексов латеральной мембраны кишечных клеток.
1 – гликокаликс; 2 – микрофиламенты; 3 – терминальная сеть; 4 – межклеточное пространство; 5 – тонофиламенты; в – плотное пятно; 7 – промежуточная плотная линия; 8 – десмосома; 9 – промежуточный контакт; 10 – плотный контакт.
Возникает вопрос о функциях сократительных структур в невозбудимых клетках. Нами еще в начале 60‑х гг. было высказано предположение, получившее подтверждение, что благодаря актомиозиновому комплексу реализуются расслабления и сокращения микроворсинок, что может существенно влиять на скорость мембранного пищеварения и всасывания. Недавно выявлена еще одна функция сократительного аппарата кишечных клеток – контроль их десквамации, обеспечивающий гомеостатирование барьерных свойств эпителиального пласта.
Наличие сократительных белков в различных клетках немышечной ткани говорит об их универсальности.
При этом актины немышечных и мышечных клеток сходны по своей структуре. Вероятно, актомиозиновый комплекс, присутствующий во всех эукариотических клетках и участвующий в двигательных процессах, включен в функционирование как возбудимых, так и невозбудимых тканей. Актомиозиновые структуры обнаружены также у большинства растений, у высших и низших грибов. Наличие актомиозиновых белков, по‑видимому, служит той эволюционной основой, благодаря которой периодически возникают уникальные способности двигательного аппарата. Примером этому могут служить насекомоядные растения. Возникновение у них двигательных функций не кажется теперь столь неожиданным, так как присутствие сократительных структур характерно для клеток всех типов.
В сократительном блоке принцип регуляции является общим и мало меняется на протяжении эволюции от примитивных грибов до человека. Во всех случаях сокращение связано с активирующим действием Ca2+ и АТФазной активностью миозина. Характерно варьирование компонентов актомиозинового комплекса, при котором один из них может выпадать. Как правило, в филогенезе наиболее стабилен актиновый компонент, тогда как миозиновый по своему составу варьирует в широких пределах, так же как и их соотношения.
Гидролитические ферменты апикальной мембраны кишечных клеток. Эти ферменты – один из основных типов функциональных блоков в системе, выполняющей пищеварительные и транспортные функции в организме (т.е. в тонкой кишке). Особое значение имеют сравнительные исследования клеток тонкой кишки и почки. Эти органы, выполняющие различные физиологические функции, обладают такими идентичными ферментами, как мальтаза, аминопептидазы, эндопептидаза, щелочная фосфатаза, трегалаза и др. (табл. 7). Недавно из щеточнокаемных мембран клеток почки и плаценты выделены такие одноименные ферменты, как аланинаминопептидаза, мальтаза, сахараза, щелочная фосфатаза и др. Многие из этих ферментов обнаружены в мембранах клеток печени и поджелудочной железы, в кровеносной системе и т.д. В некоторых случаях удается показать близость или даже идентичность таких ферментов. Так, свойства щелочной фосфатазы клеток печени, почки, тонкой кишки, плаценты и сыворотки крови обладают значительным сходством. Обнаружено также сходство в иммунохимических характеристиках аланинаминопептидазы клеток поджелудочной железы, почки и печени человека.
Дата добавления: 2016-01-26; просмотров: 1494;