Посттранскрипционная регуляция

 

Из молекулярной биологии мы знаем, что на генах транскрибируются большие молекулы пре‑РНК, которые, прежде чем стать мРНК и выйти из ядра в цитоплазму, должны пройти процессинг. На том конце, который транскрибируется первым и который присоединяется к рибосоме, образуется «кэп» – молекула метилированной ГТФ. К противоположному концу присоединяется поли‑А – отрезок, состоящий из 100–200 аденинов. Наконец, участки, считанные с экзонов, соединяются друг с другом, а участки, считанные с интронов, вырезаются и деградируют. Существуют экспериментальные данные, показывающие, что скорость процессинга и время выхода мРНК из ядра могут быть различными, т. е. они могут регулироваться.

Более важно другое: оказалось, что многие РНК могут вовсе не выходить в цитоплазму, а вскоре после синтеза деградировать в ядре. Из этих фактов родились важные представления о том, что транскрибируется очень много генов, а из ядра в цитоплазму выходит гораздо меньше видов различных мРНК. Эти взгляды, которые развивают американские ученые Бриттен и Давидсон, предполагают, что на уровне транскрипции, на хромосомах происходит только частичная регуляция и активными являются многие или даже все гены. Главная же регуляция, согласно этим взглядам, происходит на посттранскрипционном уровне, т. е. при разделении на те виды пре‑мРНК, которые подвергнутся процессингу и выйдут в цитоплазму, и те, которые быстро распадутся в ядре, не выходя из него. Проблема избирательной экспрессии ограниченного набора генов в разных клетках, таким образом, отодвигается на следующий уровень регуляции.

О механизмах этого явления мы пока ничего не знаем. Нет и строгих доказательств того, что в ядре транскрибируются все или почти все гены. Все это заставляет большинство ученых пока очень сдержанно относиться к гипотезе Бриттена и Давидсона и не спешить с отказом от традиционных представлений о том, что основная регуляция работы генов происходит путем их избирательного считывания.

Тем не менее действительно существуют факты, свидетельствующие о том, что в ядрах находится значительно больше видов РНК, чем в цитоплазме (приблизительно в 10 раз), и это требует своего объяснения. Может быть, Бриттен и Давидсон правы‑только отчасти и в ядрах транскрибируются РНК не со всех, но с большого числа генов. Потом в ходе процессинга происходит дальнейшая выбраковка первичных транскриптов. Если это справедливо, то выбор активных генов происходит как бы в два тура: сначала на хромосомах – предварительный и менее строгий, а затем при процессинге – окончательный.

Догадаться, как происходит регуляция, невозможно: даже правильная догадка, пока она не доказана фактами, всего лишь догадка и ценность ее невелика. Вопрос о действительной роли процессинга будет, очевидно, разрешен в ближайшие годы.

 

4. Информосомы – депо генетической информации

 

Большие молекулы РНК всегда или почти всегда связаны с белком. В ядрах они образуют рибонуклеопротеидные комплексы, которые открывшие их Г. П. Георгиев и его сотрудники назвали «информоферы». Роль их не вполне ясна. Может быть, она чисто структурна и связь про‑мРНК с белком защищает их от распада или необходима для правильного процессинга. А может быть, она более специфичная и белки информофер участвуют в регуляции процессинга, т. е. в том, о чем говорилось в предыдущем разделе.

Еще до открытия ядерных рибонуклеопротеидов (РНП) комплексы РНК с белком в цитоплазме были обнаружены А. С. Спириным у ранних зародышей вьюна. Двадцать лет назад он предположил, что эти комплексы играют роль в регуляции синтеза белка и содержат мРНК. В соответствии с этим они были названы информосомами. Почти одновременно сходная идея была высказана американским биологом А. Тейлором, который предложил термин «маскированные мРНК».

Ситуация в то время была такова, что, перефразируя известное выражение, можно сказать – если бы информосомы не были открыты, их надо было выдумать. Действительно, активация синтеза белка у оплодотворенных или даже у просто активированных яиц морского ежа происходит без участия ядер. Без участия ядер происходит раннее развитие и синтез белка и у зародышей рыб и амфибий. Следовательно, увеличение интенсивности синтеза белка – резкое, как у морского ежа, или умеренное, как у рыб и амфибий, – после оплодотворения могло происходить только на мРНК, синтезированных ранее и запасенных. Если эти мРНК к моменту оплодотворения уже были, то почему они не включились в трансляцию сразу? Очевидно, они были каким‑то образом изолированы от белоксинтезирующего аппарата (рибосом), т. е. маскированы.

А. С. Спирин и его сотрудники показали, что информосомы принципиально отличаются от других комплексов РНК с белком. Эти отличия состоят в ином соотношении в них белка и РНК. Для рибосом это соотношение равняется приблизительно 1: 1, и плотность рибосом, измеренная в растворах хлористого цезия, равна 1,51. Для информосом эта плотность всегда меньше и близка к 1,4. Это соответствует соотношению РНК и белка, как 3:1.

Роль информосом кажется очевидной: создать депо матриц, которое позволило бы накапливать их без немедленного синтеза белка и регулировать их переход к трансляции. Такая регуляция может быть количественной, и тогда состав мРНК на рибосомах и в информосомах одинаков – меняется только их доля в этих двух структурах. Ho она, как оказалось, может быть и качественной, и выход мРНК из информосом регулирует не только интенсивность синтеза, но до известной степени и состав синтезируемых белков.

Можно привести несколько примеров, когда участие информосом очень существенно. О накоплении мРНК в оогенезе и об их постепенном переходе на рибосомы мы уже говорили. При дифференцировке мышц мРНК мышечного белка – миозина накапливаются в миобластах заранее, еще до того, как эти клетки сольются в мышечные трубочки. Ho как только такое слияние произошло и необходим быстрый синтез миозина, его матрицы переходят из информосом в полисомы и сразу начинается активный синтез этого белка.

Последний пример касается такой очень сложной дифференцировки, как образование сперматозоидов. Этот процесс имеет еще ту особенность, что после мейоза синтез новых РНК почти или совсем не происходит. Белки же синтезируются на всех стадиях спермиогенеза, и для каждой стадии характерен синтез своих белков. Последними синтезируются белки головки спермия: у рыб это примитивные белки – протамины, у других животных – особые протаминоподобные гистоны. Их единственная функция – очень плотная упаковка ДНК в головке сперматозоида. Матрицы для синтеза протаминов или гистонов спермия транскрибируются заранее, еще до образования головки. И мРНК хранятся все это время (несколько дней) в маскированном состоянии, не транслируясь. Они начинают транслироваться только в самом конце дифференцировки, на той ее стадии, на какой это необходимо.

Механизмы, определяющие судьбу новосинтезированных мРНК, т. е. их путь в информосомы или прямо на рибосомы, неизвестны. Также неизвестно, чем регулируется выход мРНК из информосом и, что особенно сложно, чем определяется выход одних мРНК и хранение других.

 








Дата добавления: 2016-01-26; просмотров: 643;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.006 сек.