Плавка стали в основной дуговой электропечи

Дуговая плавильная печь(рис. 5.2): время плавки τпл = 4 …8 час., угар 5…8 % от веса металлической шихты, рабочее напряжение Uраб. = 160 … 600 В., ток I = 1 … 10 кА, ёмкость печей 0,5 ... 400 т.

Процесс плавки разделяется на два существенно различающихся периода: окислительный (расплавление и кипение) и восстановительный (рафинирование).

1. Окислительный период. Главная задача окислительного процесса – довести химический состав до требуемого по содержанию углерода, обеспечить выравнивание температуры и химсостава по объему металла. После загрузки шихты опускаются электроды и включается электрический ток. Расплавление шихты происходит под действием дугового разряда. Дуга горит между электродами, на которые подаётся трёхфазный ток, и металлом. Недостатком электродуговых печей является сильный перегрев металла в зоне горения дуги. Температура в этой зоне почти вдвое превышает температуру плавления металла. Это приводит к сильному окислению металла (угару), причём значительное количество оксидов железа теряется в виде бурого дыма, что приводит к загрязнению атмосферного воздуха. После расплавления и в жидком сплаве происходят процессы окисления, но интенсивность этих процессов много меньше, чем на воздухе. Окисляется прежде всего железо, а затем и примеси. FeO распределяется между металлом и шлаком, растворяясь в них. Таким образом, FeO играет роль передатчика кислорода:

2Fe + O2 = 2FeO + Q,

Mn + FeO = MnO + Fe + Q,

Si + 2FeO = SiO2 + 2Fe + Q.

В конце окислительного периода при t > 1400 °С начинается окисление С. При использовании для выплавки стали чугуна (передельного и (или) литейного), углерода после расплавления обычно выделяется значительно больше, чем требуется. Для удаления излишнего углерода добавляют руду, содержащую оксиды железа. В результате происходит окисление углерода по реакции С + FeO = Fe + CO↑ - Q (эндотермическая реакция). Так как при этом выделяется угарный газ, то внешне это выглядит, как кипение стали. Хотя сталь имеет

температуру значительно меньше, чем температура её кипения. Основные шлаки позволяют в процессе плавления производить удаление вредных примесей (P, S). Дефосфоризация происходит по реакции 2P + 5FeO + 4CaO = (CaO)4P2O5 + 5Fe + Q – . Соединения фосфора, растворяясь, распределяются между металлом и шлаком в определенном соотношении. После двух, трех скачиваний шлака можно обеспечить содержание Р < 0,015 %. В этот же период проводят десульфацию. Наводят «белый» шлак СаО + С (кокс или электродный бой) + СаF2 (плавиковый _______шпат) в пропорции 12:1:2. FeS + CaO + C = CaS + Fe + CO↑ - Q.

Степень десульфации до 75 ... 80 %. 2. Восстановительный период. Цель: восстановить Fe из FeO. Оксиды железа при затвердевании стали выпадают из раствора и резко ухудшают прочностные и пластические свойства стали. Поэтому восстановление оксидов является

очень важной частью процесса. Раскисление производят ферросплавами, которые могут вводиться в жидкий металл и непосредственно взаимодействовать с ним или погружаться на штанге в шлак. Первый способ называется осаждающим, второй – диффузионным. Наиболее быстрым и потому более дешёвым способом раскисления является осаждающий, но при его длительном использовании ухудшается пластичность и ударная вязкость металла. Это связано с накоплением оксидов в металле за счёт многократного использования при переплаве литниковых систем и литейного брака. Реакции при раскислении:

FeO + Mn = MnO + Fe,

2FeO + Si = SiO2 + 2Fe,

3FeO + 2Al = Al2O3 + 3Fe.

При осаждающем раскислении оксиды Mn, Si, Al большей частью всплывают в шлак. Остающиеся в жидком металле оксиды представляют значительно меньшую опасность по сравнению с FeO, т. к. в меньшей степени снижают пластичность и ударную вязкость, но при длительном использовании этого вида раскисления постепенно происходит ухудшение вязких свойств металла. При диффузионном раскислении реакции происходят в шлаке. В результате действия закона Нернста (см. ниже) уменьшается содержание FeO в жидком металле. В зависимости от длительности второго периода и количества раскислителей

получают кипящие, полуспокойные и спокойные стали. Самый короткий восстановительный период у кипящих сталей. При их производстве используют для раскисления только марганец. Так получают низкоуглеродистые стали, которые обладают высокой пластичностью в результате очень малого содержания кремния. При разливке они кипят в изложнице.

Для получения легированных сталей производят легирование. Ферросплавы, содержащие Ni, Co, Mo, Cu, не окисляются, т. к. имеют меньшее сродство с O2, чем Fe. Поэтому их вводят в конце первого периода, чтобы обеспечить равномерное распределение в расплавленном металле. Более активные элементы Si, Mn, Al, Cr, V, Ti вводят в печь после раскисления или перед разливкой в ковш.

Индукционная тигельная плавильная печь(рис. 5.3) В таких печах можно выплавлять сталь с низким содержанием углерода, т. к. нет науглероживания от графитовых электродов. По сравнению с электродуговыми печами, металл в них в меньшей степени насыщается газами. В основном применяются печи с кислой футеровкой. Нагрев металла производится в результате того, что индуктор печи, представляющий собой водоохлаждаемую

катушку, наводит токи индукции в металле шихты или жидком металле. Частота переменного тока в индукторе ϕ = 500 ... 2500 1/с. В индукционных печах отсутствует зона перегрева, поэтому угар металла значительно меньше, чем в электродуговых печах. Кроме того, переменное магнитное поле способствует усиленному перемешиванию жидкого металла, что приводит к быстрому выравниванию химического состава жидкого металла. Высокая температура ванны позволяет легировать тугоплавкими элементами. Однако низкая температура шлака затрудняет раскисление и рафинирование металла через шлак.

Шихтой является стальной лом, возврат литейного производства, брикетированная стружка. Для снижения концентрации углерода в жидком металле, по сравнению с его концентрацией в шихте, в качестве окислителей используются железная руда, окалина (FeO). Для последующего удаления оксидов железа применяют раскислители. Флюсы используются для получения шлака заданного состава. Шлаки служат для защиты металла от окисления и удаления вредных примесей. Для легирования применяют легирующие добавки (ферросплавы и лиг аЦтеулрьы )п. лавки заключается в получении расплавленного металла для отливок

требуемого химического состава, прежде всего по углероду и легирующим элементам, а также требуемого качества, прежде всего путем снижения содержания вредных примесей S, Р и газов. S и P образуют кислые соединения Р2О5, FeS, которые в процессе плавки

нейтрализуются основными окислами шлака, главным образом известью CaO.

Таким образом, для удаления S и Р нужен основный шлак, а следовательно, и основная печь, т. е. с основной футеровкой. В основных печах плавку конструкционной стали ведут на углеродистой шихте: стальной лом 90 %, электродный бой или кокс для науглероживания металла и известь (2–3 %). Основный шлак: CaO 40 … 45 %, SiO2 20 … 25 %, FeO 10 … 15 %. В кислой печи удаление S и P практически невозможно, поэтому нужна чистая по S и P шихта, шлак кислый (55 – 58 % SiO2), условия для раскисления более благоприятные, кремнезем связывает FeO в FeO×SiO2: FeO + SiO2 → FeO × SiO2. В кислых печах плавку ведут на шихте из легированных отходов без окисления примесей (переплав). Процесс плавки базируется на следующих законах: Закон действующих масс: скорость химических реакций пропорциональна концентрации реагирующих веществ.

Закон распределения Нернста: если вещество растворяется в двух соприкасающихся, но несмешивающихся жидкостях, например, металл и шлак, то распределение вещества между ними происходит до установления определенного соотношения – константы распределения, постоянного для данной температуры. Следовательно, изменяя состав шлака, можно направленно изменять распределение примесей в шлаке и металле. Периодически скачивая шлак, можно эффективно удалять примеси из жидкого металла. Принцип Ле Шателье: всякая система, находящаяся в состоянии равновесия, стремится сохранить это равновесие. При любом изменении извне факторов равновесия (температуры, давления, концентрации) внутри системы возникают процессы, противодействующие этому изменению. Следовательно, изменяя внешние факторы, в данном случае концентрацию компонентов и темпера-

туру, можно обеспечить развитие обратимых реакций в нужном направлении. Способы улучшения качества стали Вакуумная обработка (дегазация) стали в ковше. Разрежение до Р = 0,267 …0,667 кПа способствует удалению почти всех растворённых в металле газов.

Разливка в инертной атмосфере уменьшает окисляемость металла.

Выдержка и разливка под слоем специального основного шлака: 53 … 55 % СаО; 43 … 45 % Al2O3; < 3 % SiO2; < 1 % FeO. Она обеспечивает частичное удаление вредных примесей.








Дата добавления: 2016-01-26; просмотров: 2157;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.006 сек.