Вероятностные модели технологических процессов

 

Стохастическая или вероятностная модель отличается от детермированной тем, что одно или несколько входящих в нее функциональных соотношений зависят от случайных параметров, значения которых подчиняются некоторым распределениям вероятностей. Разработка вероятностной модели сводится к исследованию и анализу случайного процесса, а затем - определению закона распределения вероятностей случайной величины.

При реализации вероятностной модели на ЭВМ необходимо разработать такой генератор случайных чисел, который мог бы генерировать случайные числа с заданным законом распределения. Этот генератор случайных чисел включается в общую схему модели и имитирует влияние случайных факторов на характер протекания технологического процесса.

Рассмотрим некоторые элементы теории вероятностей, необходимые для построения и исследования стохастических моделей.

Вероятность представляет собой количественную меру шансов происшествия или правдоподобного события. Вероятность характеризуется величиной P, определяемой выражением

P = m/n, (4-1)

где m - число интересующих нас событий;

n - общее число рассмотренных событий.

Как можно видеть из неравенства

0<=m<=n (4-2)

значение P заключено между 0 и 1. Вероятность невозможного события равна нулю, а достоверного - единице.

Распределение вероятностей можно представить себе как некоторое систематическое расположение результатов случайных испытаний. Распределение вероятностей выражается в виде функции и иллюстрируется графиком частоты появления случайной величины в различных интервалах.

Изобразим графически результаты какого-либо испытания, например, результаты определения массы молотого кофе в пачках. Значения частоты отложим вдоль оси ординат, а значения измеряемой величины х - вдоль оси абсцисс. Сглаженная кривая этого графика называется функцией плотности вероятности f(x) или плотностью распределения вероятностей случайной величины (рис. 4.1.). Термины “функция плотности” и “плотность распределения” равнозначны. Функция распределения вероятности F(x) является интегралом (или кумулятивной, накопленной величиной) функции плотности вероятности f(x). Кривая функции плотности представляет собой график первой производной функции распределения вероятности, т.е.

 

(4-3)

(4-4)

 

 

Площадь, находящаяся под кривой функции плотности вероятности всегда равна единице. Площадь, расположенная под частью кривой функции плотности вероятности, равна вероятности P того, что результат случайного измерения xi лежит в интервале между соответствующими значениями абсциссы : x и x+dx, т.е.

P(x < xi < x + dx)

Вид функции распределения вероятностей показан на рис. 4.2. Вероятность того, что случайная величина xi не превышает x, равна значению соответствующей ординаты, т.е.

P(xi < x)








Дата добавления: 2016-01-18; просмотров: 925;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.003 сек.