Понятие об использовании выходной энергии МСПТ
При изучении теории турбинной ступени, мы отмечали, что выходя из ступени со скоростью С2 поток пара тормозится, в результате чего кинетическая энергия расходуется на повышение энтальпии. Для данной ступени безразлично, что происходит с паром, покинувшим ее. Независимо от того, происходит торможение пара за ступенью, или нет, энергия для нее потеряна. Поэтому в любой ступени выходная потеря неизбежна.
Однако в многоступенчатой турбине за данной ступенью расположена следующая ступень. Если поток пара, выходящий из (к-1)-й ступени со скоростью С2к-1 не тормозится, а плавно входит в направляющий аппарат следующей к-й ступени, то из процесса преобразования энергии исключается необратимый процесс перехода кинетической энергии в тепловую, и, следовательно, общий КПД турбины увеличивается.
Рассмотрим течение пара при переходе его из (к-1)-й в к-ю ступень. Пар выходит из рабочей решетки (к-1)-й ступени (рис.92) со скоростью W2.
Построив выходной треугольник скоростей для этой ступени, определим скорость С2к-1 и угол . Если осевой зазор между ступенями невелик, а угол обеспечивает плавный вход пара в направляющий аппарат следующей, к-й ступени, то уже на входе пар будет обладать кинетической энергией . Располагаемая энергия, которая может быть освобождена в к-й ступени определится суммой адиабатного теплоперепада hак и входной кинетической энергии . Эта сумма и даст нам располагаемый теплоперепад на к-ю ступень:
(4.4.1)
Таким образом, использование выходной энергии предыдущей ступени позволяет увеличивать располагаемую энергию следующей ступени, а, следовательно, и ее внутреннюю работу.
Дата добавления: 2015-11-26; просмотров: 650;