Формулы средней ошибки выборки.

 

В связи с тем, что признаки в изучаемой совокупности варьируют, то состав единиц, попавших в выборку, может не совпадать с составом единиц всей совокупности. Это означает, что Р и не совпадают с W и . Возможное расхождение между этими характеристиками определяется ошибкой выборки, которая определяется по формуле:

 

где - генеральная дисперсия.

где - выборочная дисперсия.

Отсюда видно, где генеральная дисперсия отличается от выборочной дисперсии в раз.

Существует повторный и бесповторный отбор. Сущность повторного отбора состоит в том, что каждая, попавшая в выборку единица, после наблюдения возвращается в генеральную совокупность и может быть исследована повторно. При повторном отборе средняя ошибка выборки рассчитывается:

 

Для показателя доли альтернативного признака дисперсия выборки определяется по формуле:

 

На практике повторный отбор применяется редко. При бесповторном отборе, численность генеральной совокупности N в ходе выборки сокращается, формула средней ошибки выборки для количественного признака имеет вид:

 

, тогда

Одно из возможных значений, в которых может находиться доля изучаемого признака равно:

где - ошибка выборки альтернативного признака.

Пример.

 

При выборочном обследовании 10 % изделий партии готовой продукции по методу без повторного отбора получены следующие данные о содержании влаг в образцах.

 

Влажность % Число образцов хi
До 13
13-15
15-17
17-19
19 и выше
   

 

Определить средний % влажности, дисперсию, среднее квадратическое отклонение, с вероятностью 0,954 возможные пределы, в которых ожидается ср. % влажности всей готовой продукции, с вероятность 0,987 возможные пределы удельного веса стандартной продукции при условии, что к нестандартной партии относятся изделия с влажностью до 13 и выше 19 %.

 

 

 

 

Лишь с определенной вероятностью можно утверждать, что генеральная доля от выборочной доли и генеральная средняя от выборочной средней, отклоняются в t раз.

В статистике эти отклонения называются предельнымиошибкамивыборки и обозначаются .

Вероятность суждений можно повысить или понизить в t раз. При вероятности 0,683 , при 0,954 , при 0,987 , тогда показатели генеральной совокупности по показателям выборки определяются:

 

 

 

 

Средний процент влажности генеральной совокупности может быть любым значением, находящемся в пределах от 15,82 до 16,33.

 

;

 

 

Таким образом, удельный вес стандартных изделий в генеральной совокупности находится в пределах 81 % – 99 %.

Из расчета задачи видно, что возможные пределы удельного веса единиц генеральной совокупности будут находиться:

 

 

А среднее значение генеральной совокупности находится в пределах :

 

 








Дата добавления: 2015-12-26; просмотров: 938;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.009 сек.