Разложение показателя разброса нагрузок на составляющие
Пусть имеется множество G приёмников , , которое разобьём на s произвольных групп, . Запишем показатель разброса нагрузок всего множества G приемников относительно точки, имеющей координаты ( ):
(12)
где – количество приёмников электроэнергии в j-й группе.
Разложение этого показателя производим при помощи следующего преобразования:
(13)
Раскроем в (13) все квадраты разностей ( ), произведём группировку слагаемых относительно них и, приняв во внимание, что ( ) – координаты ЦЭН j-й группы приёмников
(14)
получим
(15)
Условие (14) определяет, что суммы
и
равны нулю. В правой части равенства (15) в первом слагаемом под знаком суммы выражение
(16)
является показателем разброса нагрузок приёмников в группе с номером j относительно своего ЦЭН. А второе слагаемое под знаком суммы
является показателем разброса нагрузки , j-й группы относительно исходной точки ( ).
Таким образом, показатель разброса нагрузок всего множества G приёмников, вычисленный относительно заданной точки, разлагается на сумму показателей разброса нагрузок групп приёмников относительно их ЦЭН и сумму показателей разброса нагрузок самих групп относительно исходной точки с координатами ( )
(17)
Для фиксированной точки ( ) значение разброса постоянно и не зависит ни от числа групп приёмников, ни от способов распределения приёмников электроэнергии по ним. Разбиение приёмников электроэнергии, минимизирующее суммарный разброс , равносильно максимизации величины С увеличением числа групп первое слагаемое (17) уменьшается, а второе возрастает, и когда число групп будет равно числу приёмников электроэнергии, т.е. , то , a .
Допустим, что приёмники электроэнергии должны быть связаны по группам распределительной сетью, передающей электроэнергию напряжением от источников питания, расположенных в ЦЭН групп, а источники питания должны быть связаны питающей сетью, передающей электроэнергию напряжением ( ) от источника питания, расположенного в точке ( ). Тогда распределение приёмников на группы по заданному числу s источников питания, минимизирующее суммарный показатель разброса нагрузок , приводит к уменьшению затрат на распределительную сеть и увеличению затрат на питающую сеть. Но снижение затрат на распределительную сеть больше увеличения затрат ( ) на питающую сеть. Следовательно, (17) и его слагаемые могут быть использованы в качестве целевых функций для постановки и решения следующих задач:
1) об оптимальном распределении приёмников электроэнергии промышленного объекта по заданному числу источников питания с определением мест расположения последних в центрах нагрузок групп;
2) об оптимальном числе источников питания для заданного множества приёмников электроэнергии промышленного объекта.
Дата добавления: 2015-12-17; просмотров: 727;